

B.Tech. in Electronic Engineering (Syllabus and Curriculum - 2024 Scheme)

National Institute of Electronics and Information Technology, Aurangabad A constituent campus of NIELIT Deemed to be University

(An Autonomous Scientific Society of Ministry of Electronics and Information Technology, Government of India) Dr Babasaheb Ambedkar Marathwada University Campus, Chhatrapati Sambhajinagar (Aurangabad), Maharashtra 431004

B. TECH - ELECTRONIC ENGINEERING

National Institute of Electronics and Information Technology, Aurangabad

Introduction

The B.Tech program in Electronic Engineering is meticulously designed to cultivate a deep understanding of electronic principles, systems, and technologies. This program aims to equip students with the knowledge and skills required to design, analyze, and implement electronic systems that are crucial in today's technologically driven world. With a curriculum that spans fundamental theories to advanced applications, this program prepares students for successful careers in various industries such as telecommunications, robotics, embedded systems, and more. Through a blend of theoretical knowledge and practical experience, students will be capable of innovating and contributing to the evolving landscape of electronics and information technology.

Program Education Objectives (PEO)

• PEO1: Fundamental Knowledge

Graduates will have a strong foundation in mathematics, science, and core electronic engineering principles, enabling them to solve complex engineering problems.

• PEO2: Technical Proficiency

Graduates will develop technical skills in designing and implementing electronic circuits, systems, and applications, with an emphasis on sustainable and ethical practices.

• PEO3: Industry Preparedness

Graduates will be prepared to enter and excel in various roles within the electronics industry, equipped with the ability to adapt to rapidly changing technologies and work effectively in multidisciplinary teams.

• PEO4: Lifelong Learning

Graduates will demonstrate a commitment to continuous learning and professional development, adapting to new challenges and advancing their expertise in electronic engineering and related fields.

• PEO5: Leadership and Ethics

Graduates will possess strong communication, leadership, and ethical decision-making skills, enabling them to take on leadership roles in their professional careers and contribute positively to society.

Program Outcomes (PO)

• PO1: Engineering Knowledge

Apply the knowledge of mathematics, science, engineering fundamentals, and electronic engineering specialization to solve complex engineering problems.

• PO2: Problem Analysis

Identify, formulate, research literature, and analyze complex engineering problems, reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.

• PO3: Design and Development

Design solutions for complex engineering problems and design system components or processes that meet specified needs with appropriate consideration for public health and safety, cultural, societal, and environmental considerations.

• PO4: Modern Tool Usage

Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools, including prediction and modeling, to complex engineering activities, with an understanding of the limitations.

• PO5: Ethics and Professionalism

Apply ethical principles and commit to professional ethics, responsibilities, and norms of the engineering practice, contributing to the broader societal good.

Course Category Wise Credit Distribution:

Course Category	Category Code	Credits
Humanities and Social Sciences	HS	10
Basic Science	BS	16
Engineering Science	ES	08
Program Core	PC	71
Professional Elective	PE	16
Open Elective	OE	06
Project work, Seminar etc	EEC	38
Audit	AU	0
Total C	redit	165

Semester wise Structure and Curriculum

for

B.Tech. in Electronic Engineering (EE)

		Semester I						
3-Week Orientation Programme								
S.No	Course Code	Course Title	L	Т	P	Credits		
1.	BS101	Engineering Physics	2	0	2	3		
2.	ES101	Engineering Drawing	1	0	4	3		
3.	BS102	Engineering Mathematics-I	3	1	0	4		
4.	ES102	Electrical Engineering	2	0	2	3		
5.	PC101	Python Programming	2	0	4	4		
6.	BS103	Engineering Chemistry	2	1	0	3		
					Total C	Credits: 20		

	Semester II						
S.No	Course Code	Course Title	L	T	P	Credits	
1.	BS201	Engineering mathematics-II	2	1	0	3	
2.	PE201	Professional Elective I	2	1	0	3	
3.	HS201	Sports and Yoga	0	1	4	3	
4.	PC201	Electronic devices and Circuits	2	0	2	3	
5.	ES201	Workshop technology	0	1	2	2	
6.	HS202	Communication skills	1	1	2	3	
7.	HS203	Design Thinking	0	0	2	1	

Total Credits: 18

List of Professional Electives are given in Annexure I

Semester III								
S.No	Course Code	Course Title	L	T	P	Credits		
1.	BS301	Engineering mathematics-III	2	1	0	3		
2.	PC301	Power Electronics	2	0	4	4		
3.	PC302	Electronic Measurement and Instrumentation	2	0	4	4		
4.	PC303	Digital Logic and Circuits	2	1	2	4		
5.	PC304	Linear Electrical Networks	2	2	0	4		
6.	HS301	Constitution of India	2	1	0	3		
					Total	Credits: 22		

	Semester IV								
S.No	Course Code	Course Title	L	T	P	Credits			
1.	PC401	Control System Engineering	3	1	0	4			
2.	PC402	Microprocessor and Microcontroller	2	1	2	4			
3.	PC403	Signals and Systems	2	1	2	4			
4.	PC404	Analog Electronics	2	1	2	4			
5.	PE401	Professional Elective II	2	0	2	3			
6.	PE402	Professional Elective III	2	1	0	3			
			•		Total	Credits: 22			

	Semester V							
S.No	Course Code	Course Title	L	T	P	Credits		
1.	PC501	Electromagnetics and Field Theory	2	1	0	3		
2.	PC502	Analog Communication	2	1	2	4		
3.	PC503	Computer Architecture and Organisation	2	0	2	3		
4.	PC504	Digital Signal Processing	2	0	2	3		
5.	PC505	VLSI Design	2	1	2	4		
6	PC506	Computer Networks and Security	2	1	0	3		

Total Credits: 20

	Semester VI						
S.No	Course Code	Course Title	L	T	P	Credits	
1.	PC601	Digital Communication	2	1	2	4	
2.	PC602	Embedded Systems and IOT	2	1	2	4	
3.	PC603	Electronic Product Design using EDA Tools	2	1	2	4	
4.	PE601	Professional Elective IV	2	0	4	4	
5.	PE602	Professional Elective V	2	0	2	3	
6.	EEC601	Mini project and Seminar	0	0	16	8	

Total Credits: 27

	Semester VII					
S.No	Course Code	Course Title	L	T	P	Credits
1.	OE701	Open Elective 1				3
2.	OE702	Open Elective 2				3
3.	EEC701	Dissertation Phase-I	0	0	20	10
		Total				16

Professional Electives and Open Electives may include relevant online courses from platforms such as SWAYAM, MOOC, NPTEL, NIELIT NSQF, or any other UGC/AICTE-approved sources in the field of Computer Science/Electronics/Electrical Engineering, subject to approval by the Dean (Academics) at the time of registration.

		Semester VIII				
S.No	Course Code	Course Title	L	T	P	Credits
1.	EEC801	Dissertation Phase-II	0	0	40	20
	Total					

- Main emphasis should be on Project Based Learning / Experiential Learning.
- There should be an option to delay internship semester to 7th/8th Semester as per institute convenience and availability of internship slots for different group of students.

Core Subject Syllabus

Course Objective: • To equip the students with an understanding of can use the training beneficially in their highe • This course gives a balance account of the f some of recent developments in this area Engineering applications in different branches • The student will be able to understand many on lasers and optical fibres. • Student can also appreciate various material engineering applications and devices. • Master fundamental principles of physics applications and devices. • Master fundamental principles of physics applications and devices. • Master fundamental principles of physics applications of physics concepts to solve complex engineering physics knowledge across engineering. • Enhance communication and teamwork skills engineering projects. Content Module 1: Interference and Diffraction: Interference in thin film of uniform thickness and non-uniform thickness, New Fabry-Perot interferometer. Fresnel and Fraunhofer diffraction, Fraunhofe diffraction grating, determination of wavelength using plane diffraction grating power of grating. Module 2: Electrostatics: Gauss's law and its applications, Divergence and Curl of Electrostatic fields, Ework and Energy, Conductors, Capacitors, Laplace's equation, Method of ima Coordinate Systems, Dielectrics, Polarization, Bound Charges, Electric displacency in dielectrics, Forces on dielectrics. Module 3: Magnetostatics Lorentz force, Biot-Savart and Ampere's laws and their applications, I fields, Magnetic vector Potential, Force and torque on a magnetic dipc. Module 4: Dielectrics materials: Magnetic materials, Magnetization, Bound currents, Boundary condition and terials, Ferromagnetic materials, origin of magnetization, Types of materials. Dielectrics-Introduction, dielectric constant, polarization, induced polar dielectrics, polarization-an atomic view, types of polarization. Module 5: Classical Mechanics	r pursuits. fundamentals of best suited to s. r modern devices I properties which plicable to enging gineering proble ues and data analyting disciplines of some for effective control of the series o	f Physics the es andtech ich are us neering. ems. alysis. for proble ollaboration to circular ower of gential, Bowalue pro	aswell nnolog sedin em-sol ion in E Mari	ving. ks (% rferom	sed) neter plan lvin	
can use the training beneficially in their highe This course gives a balance account of the former of recent developments in this area Engineering applications in different branches Course Outcome: The student will be able to understand many on lasers and optical fibres. Student can also appreciate various material engineering applications and devices. Master fundamental principles of physics applications and devices of Apply physics concepts to solve complex engineering applications in experimental techniques. Integrate physics knowledge across engineering in Enhance communication and teamwork skills engineering projects. Content Module 1: Interference and Diffraction: Interference in thin film of uniform thickness and non-uniform thickness, New Fabry-Perot interferometer. Fresnel and Fraunhofer diffraction, Fraunhofe diffraction grating, determination of wavelength using plane diffraction grating power of grating. Module 2: Electrostatics: Gauss's law and its applications, Divergence and Curl of Electrostatic fields, E Work and Energy, Conductors, Capacitors, Laplace's equation, Method of ima Coordinate Systems, Dielectrics, Polarization, Bound Charges, Electric displacency in dielectrics, Forces on dielectrics. Module 3: Magnetostatics Lorentz force, Biot-Savart and Ampere's laws and their applications, I fields, Magnetic vector Potential, Force and torque on a magnetic diportion of the programment of the programment of the programment of the programment of the polarization, Types of materials. Perromagnetic materials: Magnetic materials, Magnetization, Bound currents, Boundary condition atterials, Ferromagnetic materials, origin of magnetization, Types of materials. Dielectrics-Introduction, dielectric constant, polarization, induced polar dielectrics, polarization-an atomic view, types of polarization. Module 5: Classical Mechanics	r pursuits. fundamentals of best suited to s. r modern devices I properties which plicable to enging gineering proble ues and data analyting disciplines of some for effective control of the series o	re Method f Physics the es andtech ich are us neering. ems. alysis. for proble ollaborati t circular ower of g ential, Bo value pro	aswell as	hat the ll as ies basies basie	sed sed	
can use the training beneficially in their highe This course gives a balance account of the form of recent developments in this area Engineering applications in different branches Course Outcome: The student will be able to understand many on lasers and optical fibres. Student can also appreciate various material engineering applications and devices. Master fundamental principles of physics applications and devices of Apply physics concepts to solve complex engineering applications and teamwork skills engineering projects. Content Module 1: Interference and Diffraction: Interference in thin film of uniform thickness and non-uniform thickness, New Fabry-Perot interferometer. Fresnel and Fraunhofer diffraction, Fraunhofe diffraction grating, determination of wavelength using plane diffraction grating power of grating. Module 2: Electrostatics: Gauss's law and its applications, Divergence and Curl of Electrostatic fields, E Work and Energy, Conductors, Capacitors, Laplace's equation, Method of ima Coordinate Systems, Dielectrics, Polarization, Bound Charges, Electric displaemergy in dielectrics, Forces on dielectrics. Module 3: Magnetostatics Lorentz force, Biot-Savart and Ampere's laws and their applications, I fields, Magnetic vector Potential, Force and torque on a magnetic dipomental of the properties of the p	r pursuits. fundamentals of best suited to s. r modern devices I properties which plicable to enging gineering proble ues and data analyting disciplines of some for effective control of the series o	entific Methods als of Physics d to the evices andtech s which are use engineering. oroblems. ta analysis. tines for problet ive collaboration s ESE 16 gs, Michel son's on at circular ive power of gr 16 e Potential, Boudary value problem oundary condition 16 the and Curl of 18 the analysis of the problem of the power of gr 16 the polar coordinate of the pol	aswell nnolog sedin em-sol ion in E Mari	ving. ks (% rferom) nete plan lvin	
can use the training beneficially in their highe This course gives a balance account of the forme of recent developments in this area Engineering applications in different branches Course Outcome: The student will be able to understand many on lasers and optical fibres. Student can also appreciate various material engineering applications and devices. Master fundamental principles of physics apple Apply physics concepts to solve complex engineering physics knowledge across engineering. Integrate physics knowledge across engineering engineering projects. Content Module 1: Interference and Diffraction: Interference in thin film of uniform thickness and non-uniform thickness, New Fabry-Perot interferometer. Fresnel and Fraunhofer diffraction, Fraunhofe diffraction grating, determination of wavelength using plane diffraction grating power of grating. Module 2: Electrostatics: Gauss's law and its applications, Divergence and Curl of Electrostatic fields, E Work and Energy, Conductors, Capacitors, Laplace's equation, Method of ima Coordinate Systems, Dielectrics, Polarization, Bound Charges, Electric displae Energy in dielectrics, Forces on dielectrics. Module 3: Magnetostatics Lorentz force, Biot-Savart and Ampere's laws and their applications, I fields, Magnetic vector Potential, Force and torque on a magnetic dipondule 4: Dielectrics materials: Magnetic materials, Magnetization, Bound currents, Boundary condition materials, Ferromagnetic materials, origin of magnetization, Types of magnetizatios, polarization, and to dielectric constant, polarization, induced polar dielectrics, polarization-an atomic view, types of polarization. Module 5: Classical Mechanics 6	r pursuits. fundamentals of best suited to s. r modern devices I properties which plicable to enging gineering proble ues and data analyting disciplines of some for effective control of the series o	properties which are usedin licable to engineering. lineering problems. les and data analysis. les and data analysis. les disciplines for problem-solving. for effective collaboration in Lof hours ESE Marks (% 16 ton's rings, Michel son's interferont diffraction at circular aperture, g, dispersive power of grating, resolved and the solution of t				
some of recent developments in this area Engineering applications in different branches Course Outcome: The student will be able to understand many on lasers and optical fibres. Student can also appreciate various material engineering applications and devices. Master fundamental principles of physics applications and devices. Master fundamental principles of physics applications and teamwork skills engineering projects to solve complex engineering projects. Content Module 1: Interference and Diffraction: Interference in thin film of uniform thickness and non-uniform thickness, New Fabry-Perot interferometer. Fresnel and Fraunhofer diffraction, Fraunhofe diffraction grating, determination of wavelength using plane diffraction grating power of grating. Module 2: Electrostatics: Gauss's law and its applications, Divergence and Curl of Electrostatic fields, E Work and Energy, Conductors, Capacitors, Laplace's equation, Method of ima Coordinate Systems, Dielectrics, Polarization, Bound Charges, Electric displacency in dielectrics, Forces on dielectrics. Module 3: Magnetostatics Lorentz force, Biot-Savart and Ampere's laws and their applications, I fields, Magnetic vector Potential, Force and torque on a magnetic dipcential, Magnetic materials, Magnetization, Bound currents, Boundary conditions and the conditions and currents, Boundary conditions and conditions and conditions and currents, Boundary conditions and conditi	modern devices modern devices modern devices plicable to enging gineering proble ues and data ana ing disciplines f s for effective co	es andtech es andtech ich are us neering. ems. alysis. for proble ollaborati ESI 16 ichel son t circular ower of g ential, Bo value pro	em-solion in E Maria 's interraperting	ving. ks (% rferom ture, p) nete olar lvin	
The student will be able to understand many on lasers and optical fibres. Student can also appreciate various material engineering applications and devices. Master fundamental principles of physics applications and devices apply physics concepts to solve complex enguineering applying to solve complex enguineering proficiency in experimental techniques. Develop proficiency in experimental techniques integrate physics knowledge across engineering. Enhance communication and teamwork skills engineering projects. Content Module 1: Interference and Diffraction: Interference in thin film of uniform thickness and non-uniform thickness, New Fabry-Perot interferometer. Fresnel and Fraunhofer diffraction, Fraunhofed diffraction grating, determination of wavelength using plane diffraction grating power of grating. Module 2: Electrostatics: Gauss's law and its applications, Divergence and Curl of Electrostatic fields, E. Work and Energy, Conductors, Capacitors, Laplace's equation, Method of ima Coordinate Systems, Dielectrics, Polarization, Bound Charges, Electric displacements in dielectrics, Forces on dielectrics. Module 3: Magnetostatics Lorentz force, Biot-Savart and Ampere's laws and their applications, I fields, Magnetic vector Potential, Force and torque on a magnetic dipole. Module 4: Dielectrics materials: Magnetic materials, Magnetization, Bound currents, Boundary conditing materials, Ferromagnetic materials, origin of magnetization, Types of magneticals. Ferromagnetic materials, origin of magnetization, Types of magneticals. Dielectrics-Introduction, dielectric constant, polarization, induced polar dielectrics, polarization-an atomic view, types of polarization. Module 5: Classical Mechanics	modern devices I properties which plicable to engine gineering proble ues and data and ing disciplines f s for effective con to. of hours wton's rings, Mi er diffraction at ng, dispersive po	received are use the meering. The meering allows allowed are used to be a second and the meering are used to be a second and the meeting are used to be a second and	em-solion in E Maria 's interraperting	ving. ks (% rferom ture, p) nete olar lvin	
engineering applications and devices. • Master fundamental principles of physics apply physics concepts to solve complex enguate enguate physics concepts to solve complex enguate physics knowledge across engineering. • Integrate physics knowledge across engineering projects. Content Module 1: Interference and Diffraction: 6 Interference in thin film of uniform thickness and non-uniform thickness, New Fabry-Perot interferometer. Fresnel and Fraunhofer diffraction, Fraunhofe diffraction grating, determination of wavelength using plane diffraction grating power of grating. Module 2: Electrostatics: 6 Gauss's law and its applications, Divergence and Curl of Electrostatic fields, E Work and Energy, Conductors, Capacitors, Laplace's equation, Method of ima Coordinate Systems, Dielectrics, Polarization, Bound Charges, Electric displacency in dielectrics, Forces on dielectrics. Module 3: Magnetostatics 6 Lorentz force, Biot-Savart and Ampere's laws and their applications, I fields, Magnetic vector Potential, Force and torque on a magnetic dipole. Module 4: Dielectrics materials: 8 Magnetic materials, Magnetization, Bound currents, Boundary condition materials, Ferromagnetic materials, origin of magnetization, Types of materials. Dielectrics-Introduction, dielectric constant, polarization, induced polar dielectrics, polarization-an atomic view, types of polarization. Module 5: Classical Mechanics 6	plicable to enging gineering proble ues and data anaing disciplines for effective control of the	ems. alysis. for proble ollaborati ESF 16 ichel son t circular ower of g 16 ential, Bo value pro	em-solion in E Mar 's inter r apert grating undary	rferom ture, p	nete olar Ivir	
• Apply physics concepts to solve complex eng • Develop proficiency in experimental techniqi • Integrate physics knowledge across engineeri • Enhance communication and teamwork skills engineering projects. Content Module 1: Interference and Diffraction: 6 Interference in thin film of uniform thickness and non-uniform thickness, Nev Fabry-Perot interferometer. Fresnel and Fraunhofer diffraction, Fraunhofe diffraction grating, determination of wavelength using plane diffraction grating power of grating. Module 2: Electrostatics: 6 Gauss's law and its applications, Divergence and Curl of Electrostatic fields, E Work and Energy, Conductors, Capacitors, Laplace's equation, Method of ima Coordinate Systems, Dielectrics, Polarization, Bound Charges, Electric displacency in dielectrics, Forces on dielectrics. Module 3: Magnetostatics 6 Lorentz force, Biot-Savart and Ampere's laws and their applications, I fields, Magnetic vector Potential, Force and torque on a magnetic diport Module 4: Dielectrics materials Magnetic materials, Magnetization, Bound currents, Boundary condition materials, Ferromagnetic materials, origin of magnetization, Types of magnetization, Force in the polarization of magnetization, induced polar dielectrics, polarization-an atomic view, types of polarization. Module 5: Classical Mechanics 6	gineering proble ues and data ana ing disciplines f s for effective co to. of hours wton's rings, Mi er diffraction at ng, dispersive po	ems. alysis. for proble ollaborati ESI 16 ichel son t circular ower of g 16 ential, Bo value pro	E Mar	rferom ture, p	nete olar Ivir	
Develop proficiency in experimental technique. Integrate physics knowledge across engineering. Enhance communication and teamwork skills engineering projects. Content Module 1: Interference and Diffraction: Interference in thin film of uniform thickness and non-uniform thickness, New Fabry-Perot interferometer. Fresnel and Fraunhofer diffraction, Fraunhofe diffraction grating, determination of wavelength using plane diffraction grating power of grating. Module 2: Electrostatics: Gauss's law and its applications, Divergence and Curl of Electrostatic fields, E Work and Energy, Conductors, Capacitors, Laplace's equation, Method of ima Coordinate Systems, Dielectrics, Polarization, Bound Charges, Electric displacency in dielectrics, Forces on dielectrics. Module 3: Magnetostatics Gauss's law and their applications, I fields, Magnetic vector Potential, Force and torque on a magnetic dipole Module 4: Dielectrics materials: Magnetic materials, Magnetization, Bound currents, Boundary condition materials, Ferromagnetic materials, origin of magnetization, Types of magnetizals. Dielectrics-Introduction, dielectric constant, polarization, induced polar dielectrics, polarization-an atomic view, types of polarization. Module 5: Classical Mechanics	ues and data anaing disciplines f s for effective co to. of hours wton's rings, Mi er diffraction at ng, dispersive po	ESF 16 ichel son t circular ower of gential, Bovalue pro	E Mar	rferom ture, p	nete olar Ivir	
• Integrate physics knowledge across engineers • Enhance communication and teamwork skills engineering projects. Content Module 1: Interference and Diffraction: Interference in thin film of uniform thickness and non-uniform thickness, Nev Fabry-Perot interferometer. Fresnel and Fraunhofer diffraction, Fraunhofe diffraction grating, determination of wavelength using plane diffraction grating power of grating. Module 2: Electrostatics: Gauss's law and its applications, Divergence and Curl of Electrostatic fields, E Work and Energy, Conductors, Capacitors, Laplace's equation, Method of ima Coordinate Systems, Dielectrics, Polarization, Bound Charges, Electric displacency in dielectrics, Forces on dielectrics. Module 3: Magnetostatics Lorentz force, Biot-Savart and Ampere's laws and their applications, I fields, Magnetic vector Potential, Force and torque on a magnetic dipole Module 4: Dielectrics materials; Magnetic materials, Magnetization, Bound currents, Boundary condition materials, Ferromagnetic materials, origin of magnetization, Types of magnetizatios, Dielectrics-Introduction, dielectric constant, polarization, induced polar dielectrics, polarization-an atomic view, types of polarization. Module 5: Classical Mechanics 6	ing disciplines for effective control of the second of the	ESI 16 ichel son t circular ower of g 16 ential, Bo value pro	E Mar	rferom ture, p	nete olan Ivin	
● Enhance communication and teamwork skills engineering projects. Content Nombule 1: Interference and Diffraction: Interference in thin film of uniform thickness and non-uniform thickness, New Fabry-Perot interferometer. Fresnel and Fraunhofer diffraction, Fraunhofe diffraction grating, determination of wavelength using plane diffraction grating power of grating. Module 2: Electrostatics: Gauss's law and its applications, Divergence and Curl of Electrostatic fields, E Work and Energy, Conductors, Capacitors, Laplace's equation, Method of ima Coordinate Systems, Dielectrics, Polarization, Bound Charges, Electric displacements in dielectrics, Forces on dielectrics. Module 3: Magnetostatics Lorentz force, Biot-Savart and Ampere's laws and their applications, I fields, Magnetic vector Potential, Force and torque on a magnetic dipole Module 4: Dielectrics materials. Magnetic materials, Magnetization, Bound currents, Boundary condition materials, Ferromagnetic materials, origin of magnetization, Types of magnetizatios, Dielectrics-Introduction, dielectric constant, polarization, induced polar dielectrics, polarization-an atomic view, types of polarization. Module 5: Classical Mechanics	o. of hours wton's rings, Mi er diffraction at ng, dispersive po	ESF 16 ichel son t circular ower of g 16 ential, Bo value pro	E Mar	rferom ture, p	nete olan Ivin	
Content Module 1: Interference and Diffraction: Interference in thin film of uniform thickness and non-uniform thickness, New Fabry-Perot interferometer. Fresnel and Fraunhofer diffraction, Fraunhofe diffraction grating, determination of wavelength using plane diffraction grating power of grating. Module 2: Electrostatics: Gauss's law and its applications, Divergence and Curl of Electrostatic fields, E Work and Energy, Conductors, Capacitors, Laplace's equation, Method of ima Coordinate Systems, Dielectrics, Polarization, Bound Charges, Electric displacency in dielectrics, Forces on dielectrics. Module 3: Magnetostatics Lorentz force, Biot-Savart and Ampere's laws and their applications, I fields, Magnetic vector Potential, Force and torque on a magnetic dipolement of the materials, Magnetization, Bound currents, Boundary conditions materials, Ferromagnetic materials, origin of magnetization, Types of materials. Dielectrics-Introduction, dielectric constant, polarization, induced polar dielectrics, polarization-an atomic view, types of polarization. Module 5: Classical Mechanics 6	wton's rings, Mier diffraction at ng, dispersive po	ESE 16 ichel son t circular ower of g 16 ential, Bo value pro	's inter r apert	rferom ture, p	nete olan lvin	
Module 1: Interference and Diffraction: Interference in thin film of uniform thickness and non-uniform thickness, New Fabry-Perot interferometer. Fresnel and Fraunhofer diffraction, Fraunhofe diffraction grating, determination of wavelength using plane diffraction grating power of grating. Module 2: Electrostatics: Gauss's law and its applications, Divergence and Curl of Electrostatic fields, E Work and Energy, Conductors, Capacitors, Laplace's equation, Method of ima Coordinate Systems, Dielectrics, Polarization, Bound Charges, Electric displacements in dielectrics, Forces on dielectrics. Module 3: Magnetostatics 6 Lorentz force, Biot-Savart and Ampere's laws and their applications, I fields, Magnetic vector Potential, Force and torque on a magnetic dipole Module 4: Dielectrics materials: 8 Magnetic materials, Magnetization, Bound currents, Boundary condition materials, Ferromagnetic materials, origin of magnetization, Types of magneticals. Dielectrics-Introduction, dielectric constant, polarization, induced polar dielectrics, polarization-an atomic view, types of polarization. Module 5: Classical Mechanics 6	wton's rings, Mi er diffraction at ng, dispersive po dectrostatic Pote	ichel son t circular ower of g 16 ential, Bo value pro	's inter r apert grating undary	rferom ture, p	nete olan Ivin	
Interference in thin film of uniform thickness and non-uniform thickness, Nev Fabry-Perot interferometer. Fresnel and Fraunhofer diffraction, Fraunhofe diffraction grating, determination of wavelength using plane diffraction grating power of grating. Module 2: Electrostatics: 6 Gauss's law and its applications, Divergence and Curl of Electrostatic fields, E Work and Energy, Conductors, Capacitors, Laplace's equation, Method of ima Coordinate Systems, Dielectrics, Polarization, Bound Charges, Electric displacements in dielectrics, Forces on dielectrics. Module 3: Magnetostatics 6 Lorentz force, Biot-Savart and Ampere's laws and their applications, I fields, Magnetic vector Potential, Force and torque on a magnetic dipole Module 4: Dielectrics materials. 8 Magnetic materials, Magnetization, Bound currents, Boundary conditions materials, Ferromagnetic materials, origin of magnetization, Types of magnetizatios, induced polar dielectrics, polarization-an atomic view, types of polarization.	er diffraction at ng, dispersive po electrostatic Pote nges, Boundary v	ichel son t circular ower of g 16 ential, Bo value pro	r apert grating undary	ture, p	olan Ivin itio	
Fabry-Perot interferometer. Fresnel and Fraunhofer diffraction, Fraunhofe diffraction grating, determination of wavelength using plane diffraction grating power of grating. Module 2: Electrostatics: Gauss's law and its applications, Divergence and Curl of Electrostatic fields, E Work and Energy, Conductors, Capacitors, Laplace's equation, Method of ima Coordinate Systems, Dielectrics, Polarization, Bound Charges, Electric displacements in dielectrics, Forces on dielectrics. Module 3: Magnetostatics Lorentz force, Biot-Savart and Ampere's laws and their applications, I fields, Magnetic vector Potential, Force and torque on a magnetic dipole. Module 4: Dielectrics materials: Magnetic materials, Magnetization, Bound currents, Boundary conditions materials, Ferromagnetic materials, origin of magnetization, Types of magneticals. Dielectrics-Introduction, dielectric constant, polarization, induced polar dielectrics, polarization-an atomic view, types of polarization. Module 5: Classical Mechanics 6	er diffraction at ng, dispersive po electrostatic Pote nges, Boundary v	t circular ower of g 16 ential, Bo value pro	r apert grating undary	ture, p	olar Ivir	
Fabry-Perot interferometer. Fresnel and Fraunhofer diffraction, Fraunhofe diffraction grating, determination of wavelength using plane diffraction grating power of grating. Module 2: Electrostatics: Gauss's law and its applications, Divergence and Curl of Electrostatic fields, E Work and Energy, Conductors, Capacitors, Laplace's equation, Method of ima Coordinate Systems, Dielectrics, Polarization, Bound Charges, Electric displacements in dielectrics, Forces on dielectrics. Module 3: Magnetostatics Lorentz force, Biot-Savart and Ampere's laws and their applications, I fields, Magnetic vector Potential, Force and torque on a magnetic dipole. Module 4: Dielectrics materials: Magnetic materials, Magnetization, Bound currents, Boundary conditions materials, Ferromagnetic materials, origin of magnetization, Types of magneticals. Dielectrics-Introduction, dielectric constant, polarization, induced polar dielectrics, polarization-an atomic view, types of polarization. Module 5: Classical Mechanics 6	er diffraction at ng, dispersive po electrostatic Pote nges, Boundary v	t circular ower of g 16 ential, Bo value pro	r apert grating undary	ture, p	olan Ivin itio	
diffraction grating, determination of wavelength using plane diffraction grating power of grating. Module 2: Electrostatics: Gauss's law and its applications, Divergence and Curl of Electrostatic fields, E. Work and Energy, Conductors, Capacitors, Laplace's equation, Method of ima Coordinate Systems, Dielectrics, Polarization, Bound Charges, Electric displacements in dielectrics, Forces on dielectrics. Module 3: Magnetostatics 6 Lorentz force, Biot-Savart and Ampere's laws and their applications, I fields, Magnetic vector Potential, Force and torque on a magnetic dipole Module 4: Dielectrics materials: 8 Magnetic materials, Magnetization, Bound currents, Boundary conditions materials, Ferromagnetic materials, origin of magnetization, Types of magneticals. Dielectrics-Introduction, dielectric constant, polarization, induced polar dielectrics, polarization-an atomic view, types of polarization. Module 5: Classical Mechanics 6	ng, dispersive po dectrostatic Pote	16 ential, Bo	grating	, resol	lvin	
Module 2: Electrostatics: Gauss's law and its applications, Divergence and Curl of Electrostatic fields, E Work and Energy, Conductors, Capacitors, Laplace's equation, Method of ima Coordinate Systems, Dielectrics, Polarization, Bound Charges, Electric displacements in dielectrics, Forces on dielectrics. Module 3: Magnetostatics Lorentz force, Biot-Savart and Ampere's laws and their applications, I fields, Magnetic vector Potential, Force and torque on a magnetic dipole Module 4: Dielectrics materials: Magnetic materials, Magnetization, Bound currents, Boundary condition materials, Ferromagnetic materials, origin of magnetization, Types of magneticals. Dielectrics-Introduction, dielectric constant, polarization, induced polar dielectrics, polarization-an atomic view, types of polarization. Module 5: Classical Mechanics 6	ages, Boundary v	ential, Bo value pro	•			
Gauss's law and its applications, Divergence and Curl of Electrostatic fields, E Work and Energy, Conductors, Capacitors, Laplace's equation, Method of ima Coordinate Systems, Dielectrics, Polarization, Bound Charges, Electric displace Energy in dielectrics, Forces on dielectrics. Module 3: Magnetostatics 6 Lorentz force, Biot-Savart and Ampere's laws and their applications, I fields, Magnetic vector Potential, Force and torque on a magnetic dipo Module 4: Dielectrics materials: 8 Magnetic materials, Magnetization, Bound currents, Boundary conditi materials, Ferromagnetic materials, origin of magnetization, Types of ma materials. Dielectrics-Introduction, dielectric constant, polarization, induced polar dielectrics, polarization-an atomic view, types of polarization. Module 5: Classical Mechanics 6	ages, Boundary v	ential, Bo value pro	•			
Work and Energy, Conductors, Capacitors, Laplace's equation, Method of imaterials, Polarization, Bound Charges, Electric displacements in dielectrics, Forces on dielectrics. Module 3: Magnetostatics 6 Lorentz force, Biot-Savart and Ampere's laws and their applications, I fields, Magnetic vector Potential, Force and torque on a magnetic dipole Module 4: Dielectrics materials: 8 Magnetic materials, Magnetization, Bound currents, Boundary condition materials, Ferromagnetic materials, origin of magnetization, Types of magneticals. Dielectrics-Introduction, dielectric constant, polarization, induced polar dielectrics, polarization-an atomic view, types of polarization. Module 5: Classical Mechanics 6	ages, Boundary v	value pro	•			
Coordinate Systems, Dielectrics, Polarization, Bound Charges, Electric displacements in dielectrics, Forces on dielectrics. Module 3: Magnetostatics 6 Lorentz force, Biot-Savart and Ampere's laws and their applications, I fields, Magnetic vector Potential, Force and torque on a magnetic dipole. Module 4: Dielectrics materials: 8 Magnetic materials, Magnetization, Bound currents, Boundary condition materials, Ferromagnetic materials, origin of magnetization, Types of magneticals. Dielectrics-Introduction, dielectric constant, polarization, induced polar dielectrics, polarization-an atomic view, types of polarization. Module 5: Classical Mechanics 6	-	_	blems	in Car	teci	
Module 3: Magnetostatics 6 Lorentz force, Biot-Savart and Ampere's laws and their applications, I fields, Magnetic vector Potential, Force and torque on a magnetic dipolement of the Module 4: Dielectrics materials: Magnetic materials, Magnetization, Bound currents, Boundary condition materials, Ferromagnetic materials, origin of magnetization, Types of magneticals. Dielectrics-Introduction, dielectric constant, polarization, induced polar dielectrics, polarization-an atomic view, types of polarization. Module 5: Classical Mechanics 6		•	tions ir			
Lorentz force, Biot-Savart and Ampere's laws and their applications, I fields, Magnetic vector Potential, Force and torque on a magnetic dipole. Module 4: Dielectrics materials: Magnetic materials, Magnetization, Bound currents, Boundary condition materials, Ferromagnetic materials, origin of magnetization, Types of magnetization, Dielectrics-Introduction, dielectric constant, polarization, induced polar dielectrics, polarization-an atomic view, types of polarization. Module 5: Classical Mechanics 6		16				
Module 4: Dielectrics materials: Magnetic materials, Magnetization, Bound currents, Boundary conditi materials, Ferromagnetic materials, origin of magnetization, Types of materials. Dielectrics-Introduction, dielectric constant, polarization, induced polar dielectrics, polarization-an atomic view, types of polarization. Module 5: Classical Mechanics 6	Divergence and		f Mag	neto	etat	
Magnetic materials, Magnetization, Bound currents, Boundary condition materials, Ferromagnetic materials, origin of magnetization, Types of magneticals. Dielectrics-Introduction, dielectric constant, polarization, induced polar dielectrics, polarization-an atomic view, types of polarization. Module 5: Classical Mechanics 6	-	u Cull O.	i wiag	neto s	nai	
materials, Ferromagnetic materials, origin of magnetization, Types of materials. Dielectrics-Introduction, dielectric constant, polarization, induced polar dielectrics, polarization-an atomic view, types of polarization. Module 5: Classical Mechanics 6	3	18				
Module 5: Classical Mechanics 6	agnetic materia	ıls-hard ı	nateria	als and	d s	
		16				
	in plane polar	coordina	ates. C	onser	vati	
Principles. Collision problems and centre of mass frame. Rotation about fi forces, rigid bossy systems.						
Module 6: Quantum Mechanics/ Physics: 8		18				
Two-slit experiment. Dual nature of light; Compton Effect; De-Broglie he Phase and group velocities; Uncertainty principle; Wave-function; Schrodin infinite potential well; Tunnel effect. Superposition Principle, Contin Normalization. Expectation values. Eigen values and eigen functions Station one dimension: Particle in a box, 1-D Finite Potential well, Harmonic oscilla Reference Books:	iger wave equati	tion; Part	icle in obabili	a finitity de	te a ensi	
Fiber optic Communication-D.C.Agarwal. Wheeler Publication, Nev	onary states, Bo	ound state	, 11p ₁	——	<u></u>	

- 2) Solid state electronic devices-Streetman, Prentice Hall India, New Delhi
- 3) Electronic devices and circuits-Allen Mottershade, Prentice Hall India, New Delhi
- 4) Fiber optic communication-Keiser. Mc Graw Hill Publication
- 5) A course in Electrical Engineering Materials S.P.Seth,P.V.Gupta, Dhanpat Rai Publication,New Delhi.
- 6) Engineering physics-Gaur and Gupta, S.Chand Publication
- 7) Engineering physics-Avadhanalu and Kshirsagar, S.Chand Publication

List of Experiments:

- 1) Determination of radius of curvature of Plano- convex lens by Newton's ring
- 2) Determination of wavelength by diffraction grating.
- 3) Study of CRO (amplitude, frequency, phase measurement).
- 4) Experiments on electromagnetic induction and electromagnetic braking;
- 5) LC circuit and LCR circuit;

Module 2: Projections of Straight Lines:

- 6) Resonance phenomena in LCR circuits;
- 7) Magnetic field from Helmholtz coil;
- 8) Measurement of Lorentz force in a vacuum tube.
- 9) To study different types of Optical fibres.

Course title:	ENGINEERING DRAWING	Sub code							
	DRAWING	Struct	L	Т	P	С			
		ure	L	1	P				
		uie	1	0	4	3			
Course Objective:	To impart and include proper understar	To impart and include proper understanding of the theory of projection.							
	• Improve the visualization skills.	• Improve the visualization skills.							
	 To enable the students with various constandards related to working drawing ir 			-					
	 To impart the knowledge on understan residential/ office building. 	ding and draw	ing of	simpl	e				
Course Outcome:	 Develop proficiency in reading and diagrams. 	 Develop proficiency in reading and interpreting engineering drawings and diagrams. 							
	 Acquire skills in creating detailed draw and systems. 	wings of electr	ronic c	compo	nents, c	rircuits,			
	 Learn industry-standard drafting techniques. 	hniques and	convei	ntions	for te	chnical			
	 Gain knowledge of CAD (Computer-A drafting and modeling. 	ided Design) s	oftwar	e tool	s for ele	ectronic			
	 Enhance visualization and spatial reas design and communication. 	soning abilities	s essei	ntial f	or engii	neering			
Content		No. of	hours.	ESF	E Mark	s (%)			
Module 1 Introduction	to engineering drawing:	8		20					
- lettering - BIS conven	g graphics and their significance – drawing instructions. Dimensioning rules, geometrical constructions constructions, Special Curves-Cycloids, Epicycloids	on. Curves use	ed in e						

20

Projections of points in four quadrants, projections of points in reference plane, line parallel to both the plane, line parallel to one plane and perpendicular to the other, line inclined to one plane and parallel to the other, line inclined to both the reference planes, traces of line, use of traces of line in obtaining projections (all four quadrants should be considered).

Module 3: Projections of planes and solids

8

20

Projections of regular planes, inclined to both planes. Projections of regular solids inclined to both planes. Introduction to solids: prisms, pyramid, cylinder, cone, cube, tetrahedron, sphere, projections of above solids with axis inclined to one plane, projections of above solids with axis inclined to both the planes, projection of composite solids (different arrangement of spheres with above solids).

Module 4: Development of Surfaces:

8

20

Development of surfaces of right, regular solids – development of prisms, cylinders, pyramids, cones and their parts

Module 5: Orthographic Projections & Isometric views:

8

20

Principles of orthographic projections – conventions – first and third angle projections. Projections of points and lines inclined to both the planes. Orthographic projections of different machine parts, sectional orthographic projections. Introduction to pictorial views, isometric projections and isometric views (Isometric and non-isometric planes).

Reference Books:

- 1) Bhatt N. D., Panchal V. M., "Engineering Drawing", Charotar Publishing House.
- 2) Dhabhade M. L., "Engineering Graphics", Vol.-I and Vol.-II, Vision Publications, Pune.
- 3) Mathur, Laxminarayan, "Elements of Engineering Drawing", Jain Publications, New Delhi.

List of Experiments:

- 1) Introduction to BIS SP 46 1988.
- 2) Explanation of various drawing instruments, symbols, RF, Dimensioning, etc.
- 3) Conversion of pictorial views to orthographic / profile views.
- 4) Projection of points and lines.
- 5) Projections of planes.
- 6) Projections of lines and planes using Auxiliary planes.
- 7) Projections of solids.
- 8) Section and development of solids.
- 9) Intersection of solids.
- 10) Isometric views.
- 11) Practice of scales, Representative Factor and dimensioning on some practical exemplaryfigure.

Course title:	ENGINEERING METHAMATICS-I	Sub code						
		Structure	L	T	P	C		
		1	3	1	0	4		
Course Objective:	To expose student to unders calculus, Infinite series and	*			culus, I	ntegral		
Course Outcome:	The terminal objectives of learning and evaluation act problems by applying the fi	ivities, a student would be	able to ide	ntify ar	nd anal	_		
	 Gain proficiency in different Apply mathematical metho	 Develop a strong understanding of calculus and its applications in engineering. Gain proficiency in differential equations and their relevance to engineering systems Apply mathematical methods to analyze and model engineering phenomena. Acquire problem-solving skills essential for advanced engineering courses an 						

	practical applications.		
Contents		No. of hours	ESE Marks (%)
Module 1: Differential	Calculus:	8	20
_	able: Limit, continuity and differentiability. rem, Taylor's theorem with remainders, in		
Module 2: Determinan	•	8	20
Determinant of a matrix factors, adjoint and investigation	of order one, order two, order three. Properse of a matrix,	rties of determinant, a	rea of triangle, minors and co-
Module 3: Integral Cal	culus:	8	20
	Integral calculus, mean value theorems, e face of solids of revolutions, Improper in		• ••
Module 4: Sequence an	nd Series	8	20
•	s of real and complex numbers, Cauchy critintegrals, improper integrals depending of	•	

Module 5: Matrices: 8 20

System of linear equations, Augmented matrix, Existence and uniqueness of solution, Gauss elimination method, Elementary row operations, LU decomposition, Row-equivalent systems, Row echelon form, Rank of a matrix, Linear dependence, Consistency of a linear system, Linear combination of solutions, General solution, Types of matrices and their properties, Eigenvalues, Eigen vectors, Eigenvalue problems, Cayley- Hamilton theorem, Similarity of matrices, Diagonalisation, Quadratic form, Reduction to canonical form

Reference Books:

- 1) Kreyszig, E., Advanced Engineering Mathematics, John Wiley & Sons
- 2) Piskunov, N., Differential and Integral calculus, Mir publishers Moscow (Vol. 1, Vol. 2)
- 3) Thomas, G.B. and Finney, R.L, Calculus and Analytic Geometry, Addison Wesley Longman
- 4) Michael D. Greenberg, Advanced Engineering Mathematics, Pearson Education Pvt. Ltd
- 5) Jain R.K., Iyengar S.R.K, Advanced Engineering Mathematics, Narosa Publishers

Course title:	ELECTRICAL ENGINEERING	Sub code				
		Structure	L	Т	P	С
			2	0	2	3
Course Objective:	 To enable the students, understand the Engineering. To impart knowledge for understanding. 	•	-			
	transformers, generators, motors etc.	ig the details of elec	u icai j	JOWEIS	ystems	,
Course Outcome:	Acquire the knowledge about circuit Theorems.	analysis by applyin	g KV	L KCI	and r	etwork
	 Analysis of Single Phase AC Circuits, determining the power in these circuits 	the representation of	falteri	nating (quantiti	es, and
	• Understand the different methods for m	easurement of vario	us ele	ctrical	quantit	ies.
	 Acquire knowledge about the construct of operation of Transformers. 	ional details, losses,	paran	neters,	and pri	nciples
	 Acquire the knowledge of fundamental characteristics, and classification of DC 			_		

Content	No. of hours	ESE Marks (%)
Module 1: Electrical Circuit:	8	20

DC circuits-Ohm's & Kirchoff's laws, mesh and nodal analysis, circuit theorems; Electro-magnetism, Faraday's & Lenz's laws, induced EMF and its uses; Network Theorems: Superposition Theorem, Theorem, Norton's Theorem, Maximum Power Transfer Theorem Voltage Source (Definition, Characteristics of Practical Source, and Equivalent Current Source), and Star-Delta Transformation.

Magnetic Circuit, Flux, MMF, Reluctance, Analogy with Electric Circuits. Simple Calculations for Composite Magnetic Circuits

Module 2: AC Circuits:	8	20

Periodic Function, Average & R.M.S., Values, Steady State Behaviour with Sinusoidal Excitation, Phasor Representation, Reactance & Impedance, Series & Parallel Circuit, Power Factor, Principle of Generation of Single Phase & Three Phase Voltages, Power in Balanced Three Phase AC System

Module 3: DC Machine: 8 20

DC Machines covering, working principle of DC machine as a generator and a motor; Types and constructional features; EMF equation of generator, relation between EMF induced and terminal voltage enumerating the brush drop and drop due to armature reaction; DC motor working principle; Back EMF and its significance, torque equation; Types of D.C. motors, characteristics and applications; Necessity of a starter for DC motor;

Module 4: Transformers: 8 20

Introduction, Basic Principles, Construction, Phasor Diagram for Transformer under No Load Condition Transformer on Load, Balance of MMF on Sides, Phasor Diagram, Equivalent Circuit, Open Circuit & Short Circuit Test, Voltage Regulation and Efficiency

Module 5: Power Systems Electrical Machines: 8 20

Elementary Idea about Power Generation, Transmission and Distribution. Sources of Electrical Power covering, Introduction to Wind, Solar, Fuel cell, Tidal, Geothermal, Hydroelectric, Thermal-steam, diesel, gas, nuclear power plants; Concept of cogeneration, and distributed generation.

Reference Books:

- 1) Hughes, Electrical Technology, Pearson Publishers
- 2) Theraja B.L., Electrical Technology, S. Chand Publishers
- 3) Kothari D.P. and NagrathI.J., Theoryand Problems of Basic Electrical Engineering, PrenticeHall India
- 4) Kulshresta D.C., Basic Electrical Engineering, TMH India
- 5) Mittle and Mittal, Basic Electrical Engineering, TMH, 2005
- 6) Tarnekar S.G., and Kharbanda P.K., "A Textbook of Laboratory Course in ElectricalEngineering", Chand S., 2006 (For practical)

List of Experiments:

- 1) Study and verification of Kirchhoff's laws applied to DC circuits.
- 2) Verification of Thevenin's Theorem.
- 3) To Verify Maximum Power Transfer theorem.
- 4) Study of AC series R-L-C circuit.
- 5) Determination of B-H curve of a magnetic material.
- 6) Study of AC parallel R-L-C circuits.
- 7) Study of balanced 3-phase circuits.
- 8) Determination of voltage regulation and efficiency of a single-phase transformer by directloading.
- 9) Study of speed control of a DC motor by field current control and by armature voltage control.
- 10) Study of reversal of direction of rotation of a 3-phase induction motor.

Course Title:	Python Programming	Sub code:				
		Structure:	L	Т	P	C
			2	0	4	4
Course Objective:	 To equip students with the necess computational problems and deve To enhance students' problem-sol analyze, design, and implement so and data analytics. 	clop software applications effective ving abilities by applying Python	ely. programı	ning co	ncepts	to
Course Outcome:	 Understand Python syntax and us manipulate program by using core strings handling methods. Develo Able to understand Data Wrangling arrays, pandas series and data frant transformation, reshaping, pivotin Able to understand Data Aggregates scrapping. Design the web Applic Explore the use Matplot lib packate techniques for plotting graphs. Corparadigm, Select appropriate data Explore the use of python program Raspberry pi. Implement Various 	e data structures like lists, sets, die p, run and manipulate python pro- ng. Manipulate one-dimensional a- mes. Perform Data Wrangling, data ing and merging. tion, Group Operations, Time ser- cation with the help of python pro- inge for Data Visualization in pytho- pomprehend the importance of the a- visualization technique for given ming for IOT system. Installing O	etionaries grams usi and multi- ta loading tes and va gramming on and im explorator data. S and De nming an	tuples ng file dimens c, cleani rious p g for IO plemen ry data s	and use operational N ng, ython w T applite the disanalysis System erry pi.	e of ons. Tumpy web cation fferents as usi
Content		No. of nours	ESI	ı Mark	S (%)	
Module 1: Introdu	ection to Python		8		20)
conversions, Expre Decision Structures Calculating a Runn Numeric Data Type Module 2: Contro Definite Iteration, Output, Using Loop Designing a Progra	int Function, Comments, Variables, Reading Inpussions, More about Data Output. Decision Structure, Comparing Strings, Logical Operators, Booleaning Total, Input Validation Loops, Nested Loops, as and Character Sets, Expressions, Functions and Istatements Formatting Text for Output, Selection, Condition on the Process Files, Processing Records, Exception on the Use Functions, Local Variables, Passing Aunctions-Generating Random Numbers, The math	Variables. Repetition Structures: I Data types and Expressions: Strict Modules. nal Iteration. File and Exceptions as. Functions: Introduction, Definitions, Global Variables.	e, if-elif-e ntroductiongs, Assign 8 :: Introduction and C Variables	else Staton, while gnment ction to alling a	tements le loop, and Co 20 File In Void F	s, Nes for lo mme
C	,	, ,				
Module 3: Strings	and Text Files:		8		20)
Testing, Searching. Lists with the in Op Sequences, Tuples Recursion, Exampl Module 4: – Desig		ryption, Lists, Introduction to Lists, Copying Lists, Processing Lists alizing Objects. Recursion: Intro	ts, List sl, Two-Dinduction,	icing, F mension Problen	Finding nal Lists n Solvi	Item s, Tuj ing v
•	s, Classes and Functions, Classes and Methods, ning: Procedural and Object-Oriented Programmin			•	rphism.	Obj
Module 5: Graphi	cal User Interface		8		2	20
Programming: Grap Button Widgets and	al based programs and GUI-based programs, Codobical User Interfaces, Using the tkinter Module, I Info Dialog Boxes, Getting Input with Entry Widnd Image Processing: Overview of Turtle Graph	Display text with Label Widgets, C get, Using Labels as Output Fields	Organizing s, Radio E	g Widge Buttons,	ets with Check	Frai Butt

Text/Reference Books:	
1. 2.	Mark Lutz, "Learning Python", O'Reilly Media, 5th Edition, 2016. White, "Hadoop: The Definitive Guide", Third Edition - O'Reilly, 2012.
3.	Brandon Rhodes and John Goerzen, "Foundations of Python Network Programming: The Comprehensive Guide to Building Network Applications with Python", Apress, Second Edition, 2016.
List of Experiments:	
1.	Installation of Python, and learning interactively at command prompt and writing simple programs.
2.	Learning the conditions and iterations in Python by writing and running simple programs.
3.	Random number generations, and problems based on random numbers.
4.	Handling tuples and exercises based on tuples.
5.	Functions and files
6.	Linear and binary search
7.	Handling tokens
8.	Finding unique and duplicate items of a list.
9.	Matrix addition, multiplications, and unity matrix.
10	Text processing using python 11. Programs related to python libraries like Numpy, Pandas,
	Scipy etc

Course title:	ENGINEERING CHEMISTRY	Sub code:	:						
		Structure	: L	Т	P	C			
			2	1	0	3			
Course Objective:	 To present sound knowledge of chemistry role of Applied Chemistry in the field scientific reasoning to do the task rationa To introduce the students to basic pri evaluation, electrochemical power source polymer. 	of science and engine ally. nciples of electrochem	ering. To inc	ulcate onstruc	habi	t of and			
Course Outcome:	• Understand the fundamental principles of applications.	chemistry and their rele	vance to engi	neerin	g				
	 Apply chemical concepts to analyze and design engineering materials and processes. 								
	Gain knowledge of corrosion mechanisms	• Gain knowledge of corrosion mechanisms and methods for prevention in engineering materials.							
	• Explore environmental chemistry and its implications for sustainable engineering practices.								
	 Acquire laboratory skills for conducting chengineering contexts. 	nemical experiments and	d analyzing re	esults i	n				
Content	•	No. of hours	ESE Mai	ks (%	5)				
	nd Molecular Structure	6		18					

Schrodinger equation. Particle in a box solutions and their applications for conjugated molecules and nanoparticles. Forms of the hydrogen atom wave functions and the plots of these functions to explore their spatial variations. Molecular orbitals of diatomic molecules and plots of the multicentre orbitals. Equations for atomic and molecular orbitals. Energy level diagrams of diatomic. Pimolecular orbitals of butadiene and benzene and aromaticity. Crystal field theory and the energy level diagrams for transition metal ions and their magnetic properties. Band structure of solids and the role of doping on band structures.

8		
Module 2: Electrochemistry	8	18

Conductivity of electrolytes- Specific, molar and equivalent conductivity, Nernst equation for electrode potential, EMF series, hydrogen electrode, calomel electrode, glass electrode, Electrolytic and galvanic cells, cell EMF, its measurement and applications, Weston standard cell, reversible and irreversible cells, concentration cell, electrode (hydrogen gas electrode) and electrolyte concentration cell, concentration cell with and without transference.

Module 3: Intermolecular forces and potential energy surfaces	6	16
Ionic, dipolar and van Der Waals interactions. Equations of state of real gases and of H3, H2F and HCN and trajectories on these surfaces.	d critical phenomena.	Potential energy surfaces
Module 4: Periodic Properties	6	16

Effective nuclear charge, penetration of orbitals, variations of s, p, d and f orbital energies of atoms in the periodic table, electronic configurations, atomic and ionic sizes, ionization energies, electron affinity and electronegativity, polarizability, oxidation states, coordination numbers and geometries, hard soft acids and bases, molecular geometries.

Module 5: Solid State 8 16

Types of solids - close packing of atoms and ions - bcc , fcc structures of rock salt - cesium chloride- spinel -normal and inverse spinel's, Stoichiometric Defect, controlled valency & Chalcogen semiconductors, Non-elemental semiconducting Materials, Preparation of Semiconductors-steps followed during the preparation of highly pure materials and further treatments. Semiconductor Devices-p-n junction diode.

Module 6: Polymer 6 16

Nomenclature, functionality, classification, methods of polymerization, mechanism of polymerization, molecular weight determination-Viscometry, light scattering methods. Plastics-Moulding constituents of a plastics and moulding of plastics into articles. Important thermoplastics and thermosetting resins- synthesis & applications of PVA, FLUON, PC, Kevlar, ABS polymer, phenolic & amino resins, epoxy resins and polyurethanes. Conductive polymers.

Reference Books 1. P. C. Jain and M. Jain, Engineering Chemistry, Dhanpat Rai Publishing Company, New Delhi, 2005. 2. B.R. Puri, L.R. Sharma, M.S. Pathania, Principles of Physical Chemistry, Vishal Publishing Company, 2008.

- 3. J. D. Lee, Concise Inorganic Chemistry, 5th Edn., Chapman and Hall, London, 1996.
- 4. S. S. Dara, S. S. Umare, A Text Book of Engineering Chemistry, S. Chand Publishing, 2011.
- 5. F.W. Billmayer. Textbook of Polymer Science, 3rd Edn, Wiley. N.Y. 1991.
- 6. A.R. West, Basic Solid State Chemistry, 2nd edition, John Wiley and Sons, 1999.

Course title:	ENGINEERING MATHEMATICS-II	Sub code:				
	<u></u>	Structure:	L	T	P	С
			2	1	0	3
Course Objective:	To provide students with a fundamental (Differential calculus & Integral calculus) engineering.					
Course Outcome:	 Understand advanced calculus concepts Master probability and statistics princip Learn differential equations of engineer Apply mathematical tools to model and 	les relevant to engineeri	ng analysi	s.		
Content	,	No	o. of hours	,	ESE I	Marks (%)
Module 1: Calculu	s of Functions of Several Variables		8			20

Limit, continuity and differentiability of functions of several variables, partial derivatives and their geometrical interpretation, Tangent plane and normal line. Euler's theorem on homogeneous, functions, Total differentiation, chain rules, Jacobian, Taylor's formula, maxima and minima, Lagrange's method of undetermined multipliers.

Module 2: Multiple Integrals	8	20
Double and triple integrals, change of order of integration, change of variables, application to gravity.	o area,volumes, M	lass, Centre of
Module 3: Vector Calculus	8	20
Scalar and vector fields, gradient of scalar point function, directional derivatives, divergence solenoidal and irrotational motion. Vector integration: line, surface and volume integrals, Graduss divergence theorem (without proof).		-
Module 4: Ordinary Differential Equations	8	20
solution (Statements only). Solutions of second and higher order linear equation with consta and dependence, Method of variation of parameters, Solution of Cauchy's equation, simultan Module 5: Complex Variable-Differentiation		•
Differentiation, Cauchy-Riemann equations, analytic functions, harmonic functions, findi analytic functions (exponential, trigonometric, logarithm) and their properties; Conformal matheir properties. Reference Books	-	
 Kreyszig, E., Advanced Engineering Mathematics, John Wild Piskunov, N., Differential and Integral calculus, Mir published Thomas, G.B. and Finney, R.L, Calculus and Analytic Geom Longman. Michael D. Greenberg, Advanced Engineering Mathematics, Jain R.K., Iyengar S.R.K, Advanced Engineering Mathematics 	ers Moscow (Vol. etry, AddisonWes Pearson Education	ley nPvt. Ltd

Course title:	Sports and Yoga	Sub code:				
		Structure:	L	Т	P	С
			0	1	4	3
Course Objective:	them to copTo create sports/gameTo introduce	a practice oriented introductory co	e. potential of the	e student	s in	
Course Outcome:	 Enhance phyparticipatio Develop tear group exerce Cultivate my practice of Promote a lactivity. Understand 	ndfulness, stress management, and	vell-being thro tion skills thro relaxation tech academic stud	ugh team niques th dies and p	sport	n the

Content	No. of hours		Marks (%)	
Module 1: Introduction to Sports Science and Yoga		8		20
Overview of sports science and its applications in engineering, In	troduction to yoga, its histor	y, and benefits,	Basic	principles of
sports training and conditioning, Introduction to various yoga asar	as (poses) and their signification	ince		
Module 2: Anatomy and Physiology in Sports and Yoga		8		20
Understanding human anatomy and physiology related to sports p	erformance, Effects of exerci	ise and yoga on	variou	is systems of
the body, Biomechanics of movement in sports and yoga, Yoga and	tomy: Understanding the alig	gnment and enga	agemei	nt of muscles
in asanas				
Module 3: Sports Training and Techniques		8		20
Principles of sports training: Strength, endurance, speed, and fl	exibility, Training methodol	ogies and perio	odizatio	on in sports,
Techniques for enhancing athletic performance, Introduction to sp	orts-specific drills and exerci	ses, Application	of yo	ga asanas for
improving athletic performance and preventing injuries				
Module 4: Sports Psychology and Mindfulness		8		20
Understanding the psychological aspects of sports performance, M	lental preparation and goal se	etting in sports,	Stress	management
techniques for athletes, Introduction to mindfulness and its app				•
practices into daily routine for improved focus and concentration				

Module 5: Applied Sports Science and Yoga in Engineering 8 20

Integration of sports science principles in engineering design, Biomechanical analysis of sports equipment and technologies, Case studies on the application of sports science in engineering projects, Designing ergonomic workspaces and equipment for athletes

Reference Books

1. "Introduction to Sports Science" by Robert Weinberg and Daniel Gould

and engineers, Practical sessions combining sports activities, yoga, and engineering projects

- 2. "Essentials of Strength Training and Conditioning" by NSCA National Strength & Conditioning Association
- 3. "Biomechanics of Sport and Exercise" by Peter McGinnis
- 4. "Yoga Anatomy" by Leslie Kaminoff and Amy Matthews
- 5. "Anatomy and Physiology for Health Professionals" by Jahangir Moini
- 6. "Sports Training Principles" by Frank Dick
- 7. "The Psychology of Enhancing Human Performance" by Frank L. Gardner and Zella E. Moore
- 8. "Mind Gym: An Athlete's Guide to Inner Excellence" by Gary Mack
- 9. "Mindfulness in Plain English" by Bhante Henepola Gunaratana
- 10. "Engineering Biomechanics: Mechanics and Design Applications in Musculoskeletal Systems" by D. Gordon E. Robertson and Graham E. Caldwell

list of Experiments

- 1. Hands-on practice sessions focusing on various yoga asanas such as Sun Salutation, Warrior poses, and balancing poses.
- 2. Emphasis on correct alignment, breath awareness, and relaxation techniques.
- 3. Practical training sessions in different sports disciplines like cricket, football, volleyball, or athletics.
- 4. Focus on improving specific skills such as batting techniques, dribbling skills, or throwing techniques.
- 5. Conducting fitness assessments including measurements of flexibility, strength, endurance, and cardiovascular fitness using standardized protocols.
- 6. Analysis of fitness test results to identify areas for improvement and design personalized fitness programs.
- 7. Interactive sessions exploring the philosophical principles of yoga such as the Eight Limbs of Yoga, Karma Yoga, and Bhakti Yoga.
- $8. \quad Guided \ meditation \ practices \ to \ cultivate \ mindfulness, \ concentration, \ and \ inner \ peace.$
- 9. Practical sessions on sports nutrition focusing on meal planning, hydration strategies, and nutrient timing for optimal performance and recovery.
- 10. Hands-on experience in preparing nutritious meals and snacks tailored to athletes' dietary needs.

Course title:	Electronics Devices and Circuits	Sub code:		_		_
		Structure:	L	T	P	С
			2	0	2	3
Course Objective:	 This course aims to provide students with semiconductor devices, including their operapplications in electronic circuits and system. Students will gain proficiency in analyzing them to comprehend the behavior of diode knowledge to practical circuit design scen. Through this course, students will develop behavior within the context of circuit-lever junctions in the operation of diodes and ot 	erating principles, char ems. g and designing simple es in various configura arios. o a comprehensive und d analysis. They will e	e diode tions an erstand xplore	circuits and appl	d dive s, enab y this PN jur otal ro	oling action le of PN
Course Outcome:	 deeper insights into electronic device behate Understand the principles and operating classifications, and integrated circuits. Analyze and design electronic circuits using applications. Gain proficiency in device modeling, simulations. 	haracteristics of electrong various semiconduc	onic de	vices fo	r diffe	
	 Explore emerging electronic devices and t Develop troubleshooting skills for diagnost 	heir potential applicati	ons in	moderi	techn	_
Content	problems in circuits and systems.	No. of hours		ESE N	Iarks	(%)
Module 1: Basic Und	lerstanding of Semiconductor Devices		8			20
Atoms and formation in solids. Semicondu energy levels, intrin	oum Theory of Solids: Basic principles of quantum med of energy bands, electrical conduction in solids, density actor in Equilibrium: charge carriers in semiconductions and extrinsic semiconductors; charge neutrality, vices & Switching Devices	of tates functions, bon ctors, carrier concen	ding fo tration	rces an	d ener	gy bands
Carrier Transport Pherocelocity- electric field Semiconductors: Carrie ourface effects.	nomena: Carrier drift, diffusion, graded impurity districted relations, high field transport charge injection and quaster generation and recombination, characteristics of except the state of the state	si Fermi levels. Non-I	Equilib	ing in	xcess (onductor Carriers duction
	on diode and Optoelectronics devices	. ,	•			20
state conditions, transi Devices, Overview of	o-structures: basic structure and principle of operation, pent and ac conditions, reverse bias breakdown, metal sem of optoelectronics, Historical background, IMPORTA nics Technology, Photonic Integrated Circuits.	niconductor junctions.I	ntrodu	ction to	Optoe	electronic
Module 4: Bipolar ju	nction transistor			8		20
Bipolar Junction Trans con-ideal effects, switch	istors: Fundamental operation, amplification with BJTs hing.	s, generalized biasing	and eq	uivalen	t circu	it model
Module 5: Field Effe	ct Transistor			8		20
	ors: Transistor operations. JFET, Metal Semiconductor F al effects, CV characteristics, equivalent circuits, carbon					

- 1. Electronic devices and Circuit Theory", "R. Boylestad", "Pearson Education", 9thEdition
- 2. "Electron devices", "S. Poornachandra, Sasikala", "Scitech", 2nd Edition
- 3. "Electronic Devices and Circuits", "Millman Halkias", "TMH", 2000
- . "Electronic Devices and Circuits", "DavidA.Bell", "PHI", 4thEdition

List of Experiments

- 1. Characterization of Semiconductor Materials: Perform experiments to understand the electrical properties of semiconductor materials such as silicon and germanium. Measure parameters like resistivity, mobility, and carrier concentration.
- PN Junction Diode Characteristics: Study the I-V characteristics of a PN junction diode under forward and reverse bias conditions. Determine parameters like threshold voltage, forward and reverse bias currents, and ideality factor.
- Diode Rectifier Circuits: Construct and analyze various diode rectifier circuits such as half-wave, full-wave bridge, and center-tapped full-wave rectifiers. Measure output voltage, ripple factor, and efficiency.
- 4. **Zener Diode Characteristics:** Investigate the voltage-regulating properties of Zener diodes. Measure the breakdown voltage and dynamic resistance of Zener diodes under different load conditions.
- 5. **Bipolar Junction Transistor (BJT) Characteristics:** Study the DC and AC characteristics of NPN and PNP bipolar junction transistors. Measure parameters like DC current gain (β), collector current vs. collector-emitter voltage (IC- VCE) characteristics, and output characteristics.
- BJT Amplifier Circuits: Design and analyze common-emitter and common-base amplifier circuits
 using bipolar junction transistors. Measure parameters like voltage gain, input/output impedance, and
 frequency response.
- 7. **Field Effect Transistor (FET) Characteristics:** Investigate the DC and AC characteristics of both JFET and MOSFET transistors. Measure parameters like drain current vs. drain-source voltage (ID-VDS), transconductance, and output conductance.
- 8. **FET Amplifier Circuits:** Design and analyze common-source and common-drain amplifier circuits using field-effect transistors. Measure parameters like voltage gain, input/output impedance, and frequency response.
- 9. **Power Devices & Switching Devices:** Experiment with power semiconductor devices such as thyristors (SCRs), power MOSFETs, and IGBTs. Analyze their switching characteristics, turn-on and turn-off times, and power handling capabilities.
- 10. **Optoelectronic Devices:** Study the characteristics and applications of optoelectronic devices such as light-emitting diodes (LEDs), photodiodes, and phototransistors. Measure parameters like emission wavelength, forward voltage drop, and responsivity.

Course title:	WORKSHOP TECHNOLOGY	Sub code:				
		Structure:	L	Т	P	С
		1	0	1	2	2
Course Objective:	To develop the technical skills of creating entities from practice to students for use of various tools, devices, understand, plan and implement various processes and create object of desired shape and size.	equipment and machine	es. To	deve	lop abi	lity to
Course Outcome:	 Acquire practical skills in using workshop tools and Understand safety protocols and practices essential for the Learn fabrication techniques including welding, may components. Gain knowledge of different materials, their property applications. Develop problem-solving abilities through hands-on mechanical components and systems. 	For working in workshop chining, and casting for notices, and selection criteria	environ nanufact for eng	nment	ing	

Content	No. of hours	ESE Marks	s (%)
Module 1: Fitting	8		20
Use and setting of fitting tools for chipping, cutting, filing, marking, centre p	ounching, drilling, ta	pping.Term w	ork to include
one job involving following operations: filing to size, drilling and tapping.			
Module 2: Carpentry		8	20
Use and setting of hand tools like hacksaws, jack planes, chisels and gauges for modern wood turning methods. Term work to include one carpentry job involving wood tuning.			
Module 3: Electrical and Electronics		8	20
Introduction to basic electrical devices and its measurement. Introduction to basic	knowledge of electr	ronics compor	nent.
Module 4: Welding		8	20
Use and setting of tools and equipment's for edge preparation for welding Lap welding of two plates, butt welding of plates.	jobs and Arc weld	ing fordiffere	nt job like,
Module 5: Machining, CNC Machines & Foundry.		8	20
At least one metal tuning job is to be demonstrated. One job on CNC Lathe and C least one demonstration of mould making. Reference Books	NC Milling machine	to bedemons	trated. At
1. S K Hajra, CHoudhury, A K Hajra, CHoudhury, & Nirj Technology, Vol. I & II.	•	fWorkshop	
2. B S Raghuwanshi, A Course in Workshop Technology,			
3. W A .l Chapman, Workshop Technology, Part I, ll & II	I		

list of Experi	ments
	1. Wood sizing exercise in planning, marking, sawing, chiselling and grooving to make
	1. Half lap joint
	2. Cross lap joint
	2. Exercise in arc welding for making
	1. Lap joint
	2. Butt joint
	3. Preparation of sand mould for the following
	1. Flange
	2. Anvil
	4. Preparation of joints, markings, cutting and filling for making
	1. V-joint
	2. T-joint
	5. Making of small parts using sheet metal
	1. Tray
	2. Funnel

Course title.	COMMUNICATION SKILL	Sub code.				
		Structure:	L	T	P	C
			1	1	2	3
Course Objective:	 The primary objective is to develop in competence in English required for inde social needs. To impart to the students the skills professional pursuit. To train the student teaching and learning. 	pendent and effective com	municati cademic	on for	acaden	nic an
Course Outcome:	 Understand the principles and technolo analog and digital transmission. Analyze and design communication net error control coding. Gain proficiency in using software tools and protocols. Explore emerging technologies such as satellite communication. Develop practical skills in configuring 	works using modulation to s for simulating and analy- wireless communication,	echnique zing com optical o	s, mult	ciplexination s	ng, and ystem
Content	networks.	No. of hours	E	SE Ma	rks (%	<u>(6)</u>
Module 1: Communi	cation & Listening		8			20
In the corporate world Module 2: Reading & Introduction of difference Introduction		ical, Different reading stra	ategies: s	8 kimmi		20 anning
inferring, predicting a Building self-confider	ent kinds of reading materials: technical & non-technical responding to content, Guessing from context, Nonce & fluency, Conversation practice, Improving res	te making, Vocabulary ext	ension. I	Barrier	s to spe	eaking
Module 3: Writing				8		20
	tice, Vocabulary expansion, Effective sentences: role coherence in writing, Writing of definitions, descript				-	•
Module 4: Engineeri	ng Ethics			8		20
Variety of moral iss Engineering Ethics, 7	ngineering and Professionalism, Models of Profession ues, Responsibility in Engineering, Engineering S The Negative Face of Engineering Ethics, Blame-I onomy, The problems of Many Hands, Kohlburg's to	tandards, The Standard Responsibility and Causa	Care, Tl	ne Pos es of i	itive f nquiry	face o
Module 5: Safety & p	problem Framing			8		20
Application issues, Co Safety, Social and Val of Technology , Comp	l experimentation, Framing the problem, Determine the problem, Determine the problem, General principles, Utilitarian think the dimensions of Technology, TechnologyPessimism outer, Technology Privacy and Social Policy, Honest the fit Analysis – Collegiality and loyalty.	ing respect for persons, Fin, The Perils of Technolog	Engineer' gical Opt	s Resp imism,	onsibi The P	lity fo Promise

Sub code:

COMMUNICATION SKILL

Course title:

Reference Books

- 1. Krishna Mohan and Meenakshi Raman (2000) Effective English Communication, Tata McGraw Hill, New Delhi.
- 2. Meenakshi Raman and Sangeetha Sharma (2006) Technical Communication, OxfordUniversity Press, New Delhi.
- 3. M. Ashraf Rizvi (2005) Effective Technical Communication, Tata McGraw-Hill, New Delhi.
- 4. Christopher Turk (1985) Effective S peaking, E & FN Spon, London
- 5. Golding S.R. (1978) Common Errors in English Language, Macmillan.
- 6. Mike Martin and Roland Schinzinger, "Ethics in Engineering" McGraw Hill
- 7. Charles E Harris, Micheal J Rabins, "Engineering Ethics, Cengage Learning
- 8. Edmund G Seebauer and Robert L Barry, "Fundamentals of Ethics for Scientists and Engineers, Oxford University Press
- 9. Caroline Whitback Ethics in Engineering Practice and Research, CambridgsUniversity Press.

List of Experiments

- 1. Conduct workshops focusing on public speaking techniques, including voice modulation, body language, and speech organization.
- 2. Organize group discussion sessions on engineering-related topics to improve students' ability to express their ideas articulately and persuasively.
- 3. Assign students to prepare and deliver technical presentations on engineering topics relevant to their specialization.
- 4. Conduct mock job interviews to help students develop effective communication skills for professional settings.
- 5. Assign students to write technical reports on engineering projects or research findings.
- 6. Provide guidance on writing professional emails for various purposes, such as inquiry, collaboration, and project management.
- 7. Explore the importance of cross-cultural communication in engineering projects with diverse team members and stakeholders.
- 8. Conduct negotiation and conflict resolution simulations to help students develop interpersonal communication and problem-solving skills.
- 9. Organize sessions where students present technical posters summarizing their research projects or engineering designs.
- 10. Arrange networking events where students can interact with professionals from the engineering industry, academia, and related fields.

Course title:	Design Thinking	Sub code:	HS102			
		Structure:	L	T	P	С
			0	0	2	1

COURSE OBJECTIVE(S):

The objective of this Course is to provide the new ways of creative thinking and Learn the innovation cycle of Design Thinking process for developing innovative products which useful for a student in preparing for an engineering career.

Course Outcomes (CO):

Student will able to

- 1. Compare and classify the various learning styles and memory techniques and Apply them in their engineering education
- 2. Analyze emotional experience and Inspect emotional expressions to better understand users while designing innovative products
- 3. Develop new ways of creative thinking and Learn the innovation cycle of Design Thinking process for developing innovative products
- 4. Propose real-time innovative engineering product designs and Choose appropriate frameworks, strategies, techniques during prototype development
 - 5. Perceive individual differences and its impact on everyday decisions and further Create a better customer experience

Module 1: Foundations of Learning and Memory

An Insight to Learning

- Understanding the Learning Process
- Kolb's Learning Styles
- Assessing and Interpreting

Remembering Memory

- Understanding the Memory Process
- Problems in Retention
- Memory Enhancement Techniques

Module 2: Emotional Intelligence and Individual Differences

Emotions: Experience & Expression

- Understanding Emotions: Experience & Expression
- Assessing Empathy
- Application with Peers

Celebrating the Difference

- Understanding Individual Differences & Uniqueness
- Group Discussion and Activities to Encourage the Understanding, Acceptance, and Appreciation of Individual Differences

Module 3: Introduction to Design Thinking and Creativity

Basics of Design Thinking

- Definition of Design Thinking
- Need for Design Thinking
- Objective of Design Thinking
- Concepts & Brainstorming
- Stages of Design Thinking Process (explain with examples):
 - Empathize
 - o Define
 - o Ideate
 - Prototype
 - o Test

Being Ingenious & Fixing Problem

- Understanding Creative Thinking Process
- Understanding Problem Solving
- Testing Creative Problem Solving

Module 4: Product Design and Prototyping

Process of Product Design

- Process of Engineering Product Design
- Design Thinking Approach
- Stages of Product Design
- Examples of Best Product Designs and Functions
- Assignment Engineering Product Design

Prototyping & Testing

- What is Prototype?
- Why Prototype?
- Rapid Prototype Development Process
- **Testing**
- Sample Example
- **Test Group Marketing**

Module 5: Customer-Centric Innovation and Final Integration

Design Thinking & Customer Centricity

- **Practical Examples of Customer Challenges**
- Use of Design Thinking to Enhance Customer Experience
- Parameters of Product Experience
- Alignment of Customer Expectations with Product Design

Feedback, Re-Design & Re-Create

- Feedback Loop
- Focus on User Experience
- Address Ergonomic Challenges
- **User Focused Design**
- **Rapid Prototyping & Testing**
- **Final Product**
- Final Presentation "Solving Practical Engineering Problem through Innovative Product Design & Creative Solution"

List of Practicals

- 1. Learning Style Assessment using Kolb's Model
- **2.** Memory Retention & Enhancement Exercise

- Emotion Mapping and Empathy Test
 Design Thinking Case Study Analysis
 Group Brainstorming for Creative Problem Solving
- 6. Mini Product Design Challenge
- 7. Low-Fidelity Prototyping Workshop
- 8. Rapid Testing and Feedback Collection
- 9. Activity on Understanding Individual Differences
- 10. Customer Persona Development and Journey Mapping

Course title:	ENGINEERING MATHEMATICS - III	Sub code:				
		Structure:	L	T	P	С
		l	2	1	0	3
Course Objective:	 To Explain the Importance of Numerical Methods in Solvin Algebraic Equations To Explain the Significance of Laplace and Z Transforms a Difference Equations. 					
	• To Apply Different Statistical and Curve Fitting Techniques	s to Gain Insights from	Data.			
	• To Describe the Theory of Complex Variables					

Course Outcome:	Master advanced mathematical techniques including vector engineering applications.	calculus and complex	x analysis for
	• Apply Laplace transforms and Numerical methods to solve problems.	differential equations	arising in engineering
	Develop proficiency in numerical methods for solving Com-	plex Variable Integra	tion problems.
	• Explore probability and statistics concepts relevant to engin	eering decision-maki	ng and data analysis.
	• Utilize mathematical modeling to analyze and solve real-we disciplines.	orld engineering prob	lems in various
Content		No. of hours	ESE Marks (%)
Module 1: Numeric	al Method	8	20
	on formula, Numerical differentiation, solution of ordinary dd, Euler's modified method and Runge- Kutta method.	ifferential equation b	yPicard's method,
Module 2: Laplace	Transform	8	20
Inverse Laplace - Con by Laplace Transform Module 3: Fourier 9		ace Transform technic	ques. Solution of LDE
Fourier series – Parse	val's identity – Harmonic Analysis.		
Module 4: Fourier	Transforms	8	20
•	rem – Fourier transform pair - Fourier sine and cosine transform theorem – Parsevals's identity.	orms – Properties – T	ransform of elementary
Module 5: Z transfo	orm and difference equations	8	20
	tary properties – Inverse Z-transform – Convolution theorem – Solution of difference equation using Z – transform.	Initial and final value	theorems – Formation of
Reference Books			
	1. P.N. Wartikar and J.N.Wartika, A Text Book of Engineer	ering Mathmatics (Vo	l. I &II)
	2. B.S.Grewal, Higher Engineering Mathematics, Khanna	Publicatons, New De	lhi
	3. Erwin Kreyszing, Advanced Engineering Mathematics,	Willey Eastern Ltd.	
L			

Course title:	Power Electronics	Sub code:				
		Structure:	L	T	P	C
			2	0	4	4
Course Objective:	 This course aims to explore the fundam various semiconductor devices, providing their behavior and applications in electrest Students will develop proficiency in an including their topologies, control stratest to evaluate their suitability for various processes and suitability for various processes in real-world scenarios, facily troubleshoot power conversion systems 	ng students with a comprehence circuits and systems. Alyzing different types of pegies, and performance chapower conversion application applying different types itating their ability to design	ower electracteristic ons of power	etronics, en	tandir c con abling	ng of verters, g them

Course Outcome: Understand the principles and characteristics of power semiconductor devices and their applications in electronic power conversion. Analyze and design power electronic circuits for various applications including rectification, inversion, and conversion. Gain proficiency in control techniques for regulating voltage, current, and power in power electronic systems. Explore the integration of power electronics in renewable energy systems, electric vehicles, and industrial applications. Develop practical skills in simulation, testing, and troubleshooting of power electronic circuits and systems. **Content** No. of hours ESE Marks(%) Module 1: Power Semiconductor Devices and Switching Fundamentals 20 Power semiconductor devices: characteristics and operation of power diodes, SCR, TRIAC, DIAC, BJT, MOSFET, and IGBT. Switching characteristics, gate triggering methods, turn-on and turn-off processes, and thermal management. Commutation techniques and protection circuits including snubbers and freewheeling diodes. Comparison and selection of devices based on application **Module 2: Power Converters – Rectifiers, Choppers, and Inverters** 20 AC-DC converters: uncontrolled and controlled rectifiers (single-phase and three-phase), half and full converters, output characteristics, and power factor control. DC-DC converters: step-down (buck), step-up (boost), buck-boost and Cuk converters, operation in continuous and discontinuous modes. DC-AC inverters: single-phase and three-phase, PWM techniques (sine PWM, SVPWM), harmonic reduction and inverter applications. Module 3: Power System Design and Protection 20 Structure of electrical power systems: generation, transmission, and distribution. Components of power systems: generators, transformers, cables, circuit breakers, and substations. Basics of load estimation, transformer selection, and cable sizing. Earthing and lightning protection. Protective devices: relays, fuses, MCBs, and surge protectors. Introduction to smart grid systems and renewable energy integration. **Module 4: Power Management in Electronic Systems** 20 Power supply design: linear voltage regulators (LDOs) and switching mode power supplies (SMPS). Battery management systems: battery types, charging techniques, protection circuits, and SoC estimation. Low-power design strategies in embedded systems: dynamic voltage and frequency scaling (DVFS), sleep modes, and power gating. Energy harvesting techniques using solar, vibration, and RF energy sources for low-power devices. Module 5: Applications of Power Electronics in Modern Systems Applications of power electronics in motor drives: DC motors, induction motors, BLDC and stepper motors. Overview of variable frequency drives (VFDs). Role of power electronics in renewable energy systems such as solar and wind energy converters. Introduction to electric vehicle power electronics: traction inverters, DC-DC converters, and onboard chargers. Design insights into UPS, SMPS, and real-world power management ICs. Reference Books P.C. Sen, "Power Electronics", Tata McGraw Hill 2 M. H. Rashid – *Power Electronics: Circuits, Devices and Applications*, Pearson 3 P. S. Bimbhra – *Power Electronics*, Khanna Publishers G. K. Dubey, S. R Doradle, "Thyristorised Power Controllers" 4 5 J. M. Jalnekar and N. B. Pasalkar, "Power Electronics" Technical Publication Ned Mohan, T.M. Undeland and W.P. Robbins, "Power Electronics: Converters, Applications 6 and Design", John Wiley, Singapore, 1994 M D Singh and K. B Khanchandani, "Power Electronics", Tata McGraw Hill 7 B.K.Bose, "Power Electronics & A.C. Drives", Prentice Hall, 1986. 8 **List of Experiments** VI Characteristics of Power Semiconductor Devices Devices: SCR, TRIAC, DIAC, MOSFET, IGBT

	Objective: Plot static and dynamic characteristics and observe switching behavior.
2.	Triggering and Commutation of SCR
	Objective: Study gate triggering circuits and natural/forced commutation methods.
3.	Study of Single-Phase Controlled Rectifier
	• Types: Half-wave and full-wave (using SCR)
	Objective: Measure output voltage and waveform under resistive and inductive loads.
4.	Simulation and Hardware of Buck and Boost Converters
	 Tools: MATLAB/Simulink or hardware prototype
	Objective: Observe voltage conversion and continuous/discontinuous conduction modes.
5.	Design and Testing of a DC-AC PWM Inverter
	Objective: Implement single-phase inverter and analyze PWM waveform and harmonics.
6.	Load Estimation and Cable Sizing for Small Power System
	Objective: Perform practical calculation for residential or lab-based loads.
7.	Earthing, Grounding and Surge Protection Demonstration
	Objective: Measure earth resistance, study earthing types and protection device operation.
8.	Design and Testing of a Linear Voltage Regulator and SMPS
	 ICs: 7805/LM317 for LDO; flyback/buck converter for SMPS
	Objective: Compare efficiency and regulation characteristics.
9.	Battery Charging & Management System using BMS ICs or Modules
	Objective: Monitor battery SoC, charge/discharge control, and protection.
10	Simulation/Hardware of Electric Vehicle Subsystems (EV Traction Drive / DC-DC Converter)
	Objective: Understand role of inverter, traction motor, and DC-DC converter in EV system

Course title: Electronic I	Measurement and Instrumentation	entation Subject code: L		L T	_ T	L T	P	C
			2	0	4	4		
Course Objective:	The primary objective of this course is to provide stude the fundamental principles underlying various measuri practical demonstrations, and hands-on laboratory exer concepts and operational mechanisms of a wide range engineering.	ng instruments. Throu cises, students will ex	igh the	oretic	cal lec nderly	tures ing		
Course Outcome:	 Understand the principles and operation of electronic measuring instruments used for electrical and electronic parameters. 							
	 Learn techniques for accurate measurement, calibration, and error analysis in electronic circuits and systems. 							
	• Gain proficiency in the design and implementation of instrumentation systems for various engineering applications.							
	• Explore advanced topics such as sensors, transducers, signal conditioning, and data acquisition systems.							
	• Develop practical skills in laboratory experiments, instrumentation tools and techniques.	data acquisition, and	analys	is usi	ng mo	odern		
Content		No. of hours	ES	E Ma	rks(%	6)		
Module 1: Fundamenta	ls of Electronic Measurement and Instrumentation	8	20					

Necessity of electronic Measurement, Block diagram of electronic measurement system, Types of Measurements, Function of instruments and measurement systems, Applications of measurement system, Elements of measurement system, Types of instruments, Theory of errors, Accuracy and Precision, Types of errors, Statistical analysis, probability of errors, Limiting errors, Standards of measurement.

Module 2: Electromechanical Instruments and AC, DC Bridges

8

20

Construction of Galvanometer, Suspension Galvanometer, Torque and deflection Galvanometer, PMMC mechanism, DC voltmeter; AC voltmeters; Peak, average and true RMS voltmeters; Digital Millimetres; Ammeters, Ohm-meters and their design' AC indicating instruments, Watt-hour meter; Power factor meter.

DC Bridges: Wheatstone Bridge, Kelvin Bridge. AC Bridges and their applications: Maxwell's Bridge, Hay's Bridge, Schering Bridge, Desauty's Bridge, Wein Bridge, Detectors for AC bridges.

Module 3: Transducers and sensors

8

20

Static and dynamic characteristics of Transducer, Classification of transducers, Capacitive transducer, Inductive transducer, Resistive transducer, Displacement Transducer, LVDT, RVDT, Strain Gauge, RTD, Optical Transducers, Hall effect transducer, Piezoelectric transducers, Transducers for measurement of Pressure, Temperature, Level, Displacement, Flow.Sensors and its types. Thermoelectric Sensors: Thermocouples, Piezoelectric Sensors, Pyroelectric Sensors, Electrochemical. Sensors, Acoustic Temperature Sensors, Nuclear Thermometer, Magnetic Thermometer, SemiconductorTypes, Thermal Radiation, Quartz Crystal, NQR, Spectroscopic Noise Thermometry, Heat Flux Sensors. Position Encoders, Resonant Sensors, SAW Sensors, Sensors Based On Semiconductor Junctions, Sensors Based On MOSFET Transistors, Charge-Coupled And CMOS Image Sensors, Fiber-Optic Sensors, Ultrasonic-Based Sensors, Biosensors, Proximity Sensors: Typical Sensor Characteristics, Technologies ForProximity Sensing, Electro-Optical Sensors, Capacitive Sensors, Magnetic Sensors.

Module 4 Signal generator and Signal Analyzer

2

CRO: Types, Dual trace, High frequency, sampling and storage oscilloscopes, Applications of CRO. Signal Generators: Introduction, Sine-wave generator, standard signal generators, Audio frequency signal generation, RF generator, Pulse generator, Function generator. Construction and operation of Signal analyzer, Wave analyzer, Harmonic Distortion analyzer, Spectrumanalyzer and Logic analyzer; Signal conditioning and its necessity, process adopted in

Module 5: Data Acquisition System

Signal conditioning, Functions of ,Signal conditioning, AC/DC Conditioning systems, Dataconversion: ADC, DAC, Generalized data acquisition system: single channel and multi-channel DAS.

Reference Books

- 1. A.D. Helfrick and W.D. Cooper: "Modern Electronic Instrumentation and MeasurementTechniques", PHI Publications.
- 2. A.K. Sawhney: "Electrical and Electronic Measurement and Instrumentation", DhanpatRai & Sons Publications
- 3. S.S. Kalsi: "Electronics Measurements", Mc Graw Hill Publications.
- 4. B.H. Oliver and J.M Cage: "Electronics Measurement and Instrumentation", Mc GrawHill Publications

List of Experiments

1.	Displacement measurement using LVDT
2.	Force/ Pressure measurement using Strain Gauge
3.	Study of Data Acquisition System
4.	Study of Lab VIEW software
5.	Study of Lab VIEW projects, SubVIs, Block Diagram, Front Panel
6.	Use of Loops, Case Structure, Sequence, Timing, Formula Node, Expression Node
7.	Use of Arrays and Clusters
8.	Study of Lab VIEWs Visual display
9.	Exploring String and File I/O
10	Data Acquisition in Lab VIEW

Course title:	Digital Logic and Circuits	Sub code:								
		Structure:	L	Т	P	С				
		I	2	1	2	4				
Course Objective	• Introduce number systems, bit	nary codes, and basic logic gates.								
	• Enable students to simplify B Maps.	oolean expressions using algebra	ic meth	ods ar	nd Karı	naugh				
	·	s of combinational logic circuits.								
	• •	• Introduce various types of flip-flops, counters, and shift registers in sequential logic.								
	Familiarize students with medevices	mory elements, logic families, and	d progr	amma	ble log	ic				
	 CO1: Perform conversions between using basic and universal gates. CO2: Simplify Boolean expressive circuit minimization. CO3: Design and analyze commultiplexers, and decoders. CO4: Understand and implementation and shift registers. 	sions using Karnaugh Maps	and I	Boole rs, sul	an alg	gebra fo				
	CO5: Understand the architectup rogrammable logic devices.	are and applications of mem	ory u	nits a	nd					
Content	programmable logic devices.	No. of hou	rs	ESE	Mark	s(%)				
Module 1: Numb	er System, Codes and Boolean Algebra	8		20						
Excess-3 code, Gr. Boolean Algebra, E products and Proprime implicants.	nd their inter-conversion, Binary Arithmetic (Aday code, Hamming code, error detection and co Boolean Functions, Canonical and Standard forms-oduct of Sums Simplification. The tabulation met	rrection. Boolean Algebra, Basic map method, Two, Three, Four at hod, Determination of Prime imp	Theo nd Five	ems a	nd pro ole K-r	perties naps, Su				

Module 2: Introduction to Verilog HDL

8 20

Verilog as HDL, Levels of Design Description, Concurrency, Simulation and Functional Verification. Language Constructs and Conventions: Introduction, Keywords, Identifiers, White Space Characters, Comments, Numbers, Strings, Logic Values, Strengths, Data Types, Scalars and Vectors, Parameters, Operators. Test benches.

Modelling and simulation of logic gates and Boolean functions using Verilog HDL. Functional verification using test benches.

Module 3: Combinational Logic Design

NAND and NOR implementation of basic gates and Boolean functions. Binary adder and sub tractor, Multiplexers and De-Multiplexers, Decoders and Encoders. Carry Lookahead adder. BCD to 7 segment decoders. An 8 bit-ALU design. Modelling and simulation of combination circuits using Verilog HDL. Writing test cases, Functional verification using test benches.

Direct and random verification.

Module 4: Sequential Logic Design

8

Introduction, S-R Flip-flops, JK flip-flop, D flip-flop, T flip-flop, master slave flip-flop. Flip-flop excitation table, Interconversion of flip-flop, Register and Counter circuits. Finite state machines-Mealy and Moore FSMs. FSM encoding techniques-binary, Gray and One hot.

Verilog RTL Coding. Modelling and simulation of sequential circuits using Verilog HDL. Writing test cases, Functional verification using test benches. Direct and random verification.

Module 5: Programmable Logic Devices-Architecture and Programming

20

PAL, PLA, PLD, CPLD and FPGA. LUT and CLB architecture. FPGA Architecture-Fine grained and coarse-grained. Verilog RTL coding for synthesis. FPGA Design Flow.

Overview of FPGA development tools. Case study-Xilinc-Kintex-7 FPGA Family. Implementation of logic circuits on FPGA. In system Debugging using ILA.

Reference Books

- 1. **M. Morris Mano, Michael D. Ciletti** *Digital Design*, Pearson Education
- 2. **R.P. Jain** *Modern Digital Electronics*, McGraw-Hill Education
- 3. **Thomas L. Floyd** *Digital Fundamentals*, Pearson Education
- 4. **John F. Wakerly** *Digital Design: Principles and Practices*, Pearson
- 5. **Tokheim** *Digital Electronics: Principles and Applications*, McGraw-Hill Education

list of Experiments

- 1. **Verification of Logic Gates:** Implement and verify the truth tables of AND, OR, NOT, NAND, NOR, XOR, and XNOR gates.
- 2. Universal Gates Implementation: Realize basic logic functions using only NAND or NOR gates.
- 3. **Boolean Expression Simplification:** Simplify given Boolean expressions and implement the minimized circuits using logic gates.
- 4. **Design of Half Adder and Full Adder:** Construct and test circuits for half and full adders using logic gates.
- 5. **Design of Half Subtractor and Full Subtractor:** Implement and verify half and full subtractor circuits.
- 6. **Multiplexer and Demultiplexer:** Design and test 4:1 MUX and 1:4 DEMUX circuits.
- 7. **Flip-Flop Implementations:** Implement and observe SR, D, T, and JK flip-flops using basic gates or ICs.
- 8. **Counters:** Design and test asynchronous and synchronous up/down counters (e.g., mod-8, mod-10).
- 9. Shift Registers: Construct and analyze SIPO, SISO, PIPO, and PISO shift registers.
- 10. **BCD to 7-Segment Display:** Design a decoder to display BCD inputs on a 7-segment LED display.
- 11. Design and Simulation of 8-bit ALU in Verilog
- 12. CLA implementation using Verilog.
- 13. Finite State Machine (FSM) Design of Sequence Detector using Verilog.
- 14. Design and Synthesis of Combinational Circuit on FPGA Board (e.g., Basys 3 / Kintex-7)
- 15. FPGA-based 4-bit Counter with LED Display and On-Chip Debugging using ILA
- 16. Verilog Implementation of a Small FSM Synthesized on Xilinx FPGA.

Course title:	Linear Electrical Networks	Sub code:				
		Structure:	L	2 2 2 direction analysis produced and curve analysis of the an	P	C
			2	2	0	4
Course Objective:	This course aims to provide students covering essential concepts such Students will learn to analyze and Windows Course Learn Cour	n as voltage, current, resistance and solve DC circuits using Kir	e, and bas chhoff's V	ic circ oltag	cuit lav e Law	ws. (KVL)
	and Kirchhoff's Current Law (K distributions in complex circuits	,,	ine voltag	e and	currei	1t
	Through theoretical study and p analyzing AC circuits using KV current behavior in electrical circuits.	L and KCL principles, facilita			•	
	 Students will learn various circu theorem, and Superposition theorem. 	•				
	This course will enable students correlations between time doma circuit behavior across different	in and frequency domain response				
	Through theoretical study and p	ractical design exercises, stude	ents will l	earn t	o desi	gn and

implement various types of filter networks including low pass, high pass, band pass, and

		band elimination filters, catering to specific frequent applications.	cy domain require	ments in practical
Course Outcome:		Understand the principles of linear circuit analysis is and network theorems. Analyze and solve linear electrical networks consist independent sources. Gain proficiency in analyzing AC circuits using phase admittance concepts. Explore the behavior of linear networks under sinustresponses. Develop problem-solving skills for analyzing and divarious engineering applications.	nsor techniques, im soidal steady-state esigning linear election.	pacitors, inductors, and spedance, and conditions and transient ctrical networks for ESE Marks(%)
		uit theory & Network Theorems Airchoff's laws, nodal and mesh analysis, solution by cl	8	20
Laplace transform, conce Brief review of Signals	ept of ind and Sys	ependent and dependent sources, analysis of special signatures. Superposition and Reciprocity theorem, Thever theorem, compensation, Tellegan's theorem, analysis	gnal waveforms, ar nin's and Norton'	nd duality of networks, s theorem, Millman's
Module 2: Transient A	nalysis o	f Networks	8	20
		sponse of R-L, R-C, R-L- C for DC and sinusoid tial equation approach and Laplace transform method.		
Module 3: RLC circuit	and Res	onance	8	20
•		ties: Partial fraction, singularity functions, wavefout initial conditions with Laplace. Resonance cond	•	•
Module 4: Two Port N	etworks	and Graph theory	8	20
	-	etic analysis for Large scale networks, Formulation and on, Analysis using NGSPICE.	solution of networ	k graph of simple
Module 5: Passive Filte	er Design		8	20
	•	pproximations, Normalized specifications, Frequence malisation, Types of frequency selective filters, Linear p	•	s,
Reference Books				
	1 "N	Network and systems" by D.Roy - Choudhary		
	So	Circuit Analysis - with computer applications to omeshwar C. Gupta, Jon W. Bayless, Behrouz Peikari.		ng" by
T	3 Fr	anklin F. Kuo, "Network Analysis and Synthesis ", Joh	n Wiley.	
	De	anvalkenburg, "Network Analysis", Printice Hall o elhi, 1994.		
	5 A	William Hayt, "Engineering Circuit Analysis," 8th	Edition, McGra	w-Hill
		lucation. Anand Kumar, "Network Analysis and Synthesis," PH		

7	Sudhakar, A., Shyammohan, S. P., "Circuits and Network," Tata McGraw-Hill
	New Delhi, 1994.

Course title:	Constitution of India	Sub code:							
	1	Structure:	L	T	P	С			
			2	1	0	3			
Course Objective:	-	To provide students with a comprehensive understanding of the historical context and processes involved in the making of the Indian Constitution.							
	To examine and analyze the sign Structure of the Indian Constitut	•	the Prean	ible a	nd the	Basic			
	To familiarize students with the Constitution and their interpretation.	•		l in th	e India	n			
	To explore the principles of state development in India.	e policy and their implications	for gover	nance	and				
Course Outcome:	Demonstrate a thorough underst the making of the Indian Constit		and key	igure	s invol	ved in			
	 Analyze and evaluate the signifi shaping Indian constitutional law 		Basic Str	ucture	e docti	rine in			
	 Apply knowledge of fundamenta issues and debates. 	al rights and duties to analyze	contempo	rary s	ocio-p	olitical			
	 Evaluate the role and powers of President, Prime Minister, and P 	•			_	the			
	Assess the functioning of local a ministers, and local governing b	•	_						

Content

Module 1: The Constitution - Introduction

The History of the Making of the Indian Constitution, Preamble and the Basic Structure, and its interpretation, Fundamental Rights and Duties and their interpretation, State Policy Principles.

Module 2: Union Government

Structure of the Indian Union, President – Role and Power, Prime Minister and Council of Ministers Lok Sabha and Rajya Sabha

Module 3: Local Administration

Governor - Role and Power, Chief Minister and Council of Ministers, State Secretariat

Module 4: Local Administration

District Administration, Municipal Corporation, Zila Panchayat

Module 5: Election Commission

Role and Functioning, Chief Election Commissioner, State Election Commission

Reference Books

1	Ethics and Politics of the Indian Constitution by Rajeev Bhargava Oxford University Press, New
	Delhi, 2008
2	The Constitution of India by B.L. Fadia Sahitya Bhawan; New edition (2017)
3	Introduction to the Constitution of India by DD Basu Lexis Nexis; Twenty-Third 2018 edition

model a complicated system into a more simplified form to interpret different physical an mechanical systems in terms of electrical system to construct equivalent electrical models for analysis. To employ time domain analysis to predict and diagnose transient performance parameters of the system for standard input functions and identify the needs of different types of controllers an compensator to assecration the required dynamic response from the system. Formulate different types of analysis in frequency domain to explain the nature of stability of the system. Understand the principles and concepts of control systems including feedback, stability, an performance criteria. Analyze and design control systems using various techniques such as root locus, frequence response, and state-space methods. Gain proficiency in modeling dynamic systems and obtaining transfer functions for control system easing and industrial automation. Develop practical skills in implementing control algorithms, tuning controllers, and analyzin system responses through simulations and experiments. Content Module 1: Introduction to Control Systems ESE Marks(%) Module 2: Time Response of Feedback Systems, Differential equation of Physical Systems—Mechanical Systems, Electric Systems, Analogous Systems, Block diagrams and signal flow graphs: Transfer functions, Block diagram algebra and Signal Flographs. Module 3: Time Response of Feedback control systems 8 20 Standard test signals, Unit step response of First and Second order Systems. Time response specifications, Time response specifications of second order systems, steady state errors and error constants. Introduction to PI, PD and PID Controller (excluding design). Module 3: Stability, Necessary conditions for Stability, Routh stability criterion, Relative stability analysis: more on the Routstability criterion, Introduction to Root-Locus Techniques, The root locus concepts, Construction of root loci. Module 4: Frequency domain analysis and stability 8 20 Concepts of stab	Course title:	Control System Engineering	Sub cod	e:				
Course Objective: To introduce different types of system and identify a set of algebraic equations to represent an model a complicated system into a more simplified form to interpret different physical an mechanical systems in terms of electrical system to construct equivalent electrical models for analysis. To employ time domain analysis to predict and diagnose transient performance parameters of it system for standard input functions and identify the needs of different types of controllers an compensator toascertain the required dynamic response from the system. To introduce different types of analysis in frequency domain to explain the nature of stability of the system. Understand the principles and concepts of control systems including feedback, stability, an performance criteria. Analyze and design control systems using various techniques such as root locus, frequence response, and states-space methods. Gain proficiency in modeling dynamic systems and obtaining transfer functions for control system and industrial automation. Explore the application of control systems in engineering disciplines such as robotics, aerospace and industrial automation. Develop practical skills in implementing control algorithms, tuning controllers, and analyzin system responses through simulations and experiments. Content			Structu	re: I	,	T	P	С
model a complicated system into a more simplified form to interpret different physical an mechanical systems in terms of electrical system to construct equivalent electrical models of analysis. To employ time domain analysis to predict and diagnose transient performance parameters of system for standard input functions and identify the needs of different types of controllers an compensator toascertain the required dynamic response from the system. Formulate different types of analysis in frequency domain to explain the nature of stability of the system. Course Outcome: Understand the principles and concepts of control systems including feedback, stability, an performance criteria. Analyze and design control systems using various techniques such as root locus, frequence response, and state-space methods. Gain proficiency in modeling dynamic systems and obtaining transfer functions for control system design. Explore the application of control systems in engineering disciplines such as robotics, aerospace and industrial automation. Develop practical skills in implementing control algorithms, tuning controllers, and analyzin system responses through simulations and experiments. Content Module 1: Introduction to Control Systems 8 20 Types of Control Systems, Effect of Feedback Systems, Differential equation of Physical Systems—Mechanical Systems, Electric Systems, Analogous Systems. Block diagrams and signal flow graphs: Transfer functions, Block diagram algebra and Signal Flographs. Module 2: Time Response of feedback control systems 8 20 Standard test signals, Unit step response of First and Second order Systems. Time response specifications, Time response specifications, Time response specifications of second order systems, steady state errors and error constants. Introduction to Pl, PD and PID Controlle (excluding design). Module 3: Stability analysis: Nodule 3: Stability analysis: Nodule 4: Frequency domain analysis and stability Corrects of stability, Necessary conditions for Stability, Rout			<u> </u>	3	,	1	0	4
performance criteria. Analyze and design control systems using various techniques such as root locus, frequence response, and state-space methods. Gain proficiency in modeling dynamic systems and obtaining transfer functions for control system design. Explore the application of control systems in engineering disciplines such as robotics, aerospace and industrial automation. Develop practical skills in implementing control algorithms, tuning controllers, and analyzin system responses through simulations and experiments. No. of hours	Course Objective:	 model a complicated system into a more simplified form to interpret different physical a mechanical systems in terms of electrical system to construct equivalent electrical models to analysis. To employ time domain analysis to predict and diagnose transient performance parameters of the system for standard input functions and identify the needs of different types of controllers a compensator toascertain the required dynamic response from the system. Formulate different types of analysis in frequency domain to explain the nature of stability of the system. 						
Types of Control Systems, Effect of Feedback Systems, Differential equation of Physical Systems —Mechanical Systems, Electric Systems, Analogous Systems. Block diagrams and signal flow graphs: Transfer functions, Block diagram algebra and Signal Flographs. Module 2: Time Response of feedback control systems Module 2: Time Response of feedback control systems Standard test signals, Unit step response of First and Second order Systems. Time response specifications, Time response specifications of second order systems, steady state errors and error constants. Introduction to PI, PD and PID Controller (excluding design). Module 3: Stability analysis 8 20 Concepts of stability, Necessary conditions for Stability, Routh stability criterion, Relative stability analysis: more on the Rout stability criterion, Introduction to Root-Locus Techniques, The root locus concepts, Construction of root loci. Module 4: Frequency domain analysis and stability 8 20 Correlation between time and frequency response, Bode Plots, Experimental determination of transfer function. Introduction to Polar Plots, (Inverse Polar Plots excluded) Mathematical preliminaries, Nyquist Stability criterion, (Systems with transportational ge excluded) Introduction to Dead, lag and lead-lag compensating networks (excluding design). Module 5: Introduction to Digital Control System 8 20 Introduction, Spectrum Analysis of Sampling process, Signal reconstruction, Difference equations. Introduction to State variables & State model, State model for Linear Continuous & Discrete time system Diagonalization. Reference Books 2 Control Systems, K.R. Varmah, McGraw hill 3 Control System Engineering, D. Roy Chowdhuri, PHI	performance criteria. □ Analyze and design control systems using various techniques such as root lo response, and state-space methods. □ Gain proficiency in modeling dynamic systems and obtaining transfer functions for design. □ Explore the application of control systems in engineering disciplines such as robot and industrial automation. □ Develop practical skills in implementing control algorithms, tuning controllers,						s, free	quency systen
Types of Control Systems, Effect of Feedback Systems, Differential equation of Physical Systems—Mechanical Systems, Electric Systems, Analogous Systems. Block diagrams and signal flow graphs: Transfer functions, Block diagram algebra and Signal Flographs. Module 2: Time Response of feedback control systems 8 20 Standard test signals, Unit step response of First and Second order Systems. Time response specifications, Time response specifications of second order systems, steady state errors and error constants. Introduction to PI, PD and PID Controlled (excluding design). Module 3: Stability analysis 8 20 Concepts of stability, Necessary conditions for Stability, Routh stability criterion, Relative stability analysis: more on the Rout stability criterion, Introduction to Root-Locus Techniques, The root locus concepts, Construction of root loci. Module 4: Frequency domain analysis and stability 8 20 Correlation between time and frequency response, Bode Plots, Experimental determination of transfer function. Introduction to Polar Plots, (Inverse Polar Plots excluded) Mathematical preliminaries, Nyquist Stability criterion, (Systems with transportational generated) and lead-lag compensating networks (excluding design). Module 5: Introduction to Digital Control System 8 20 Introduction, Spectrum Analysis of Sampling process, Signal reconstruction, Difference equations. Introduction to State variables analysis: Introduction, Concept of State, State variables & State model, State model for Linear Continuous & Discrete time system Diagonalization. Reference Books 2 Control Systems, K.R. Varmah, McGraw hill 3 Control System Engineering, D. Roy Chowdhuri, PHI	Content	<u> </u>		No. of hours	F	ESE M	arks(%)
Systems, Analogous Systems. Block diagrams and signal flow graphs: Transfer functions, Block diagram algebra and Signal Flographs. Module 2: Time Response of feedback control systems Standard test signals, Unit step response of First and Second order Systems. Time response specifications, Time response specifications of second order systems, steady state errors and error constants. Introduction to PI, PD and PID Controller (excluding design). Module 3: Stability analysis Stability analysis Concepts of stability, Necessary conditions for Stability, Routh stability criterion, Relative stability analysis: more on the Rout stability criterion, Introduction to Root-Locus Techniques, The root locus concepts, Construction of root loci. Module 4: Frequency domain analysis and stability Solvent and frequency response, Bode Plots, Experimental determination of transfer function. Introduction to Plotar Plots, (Inverse Polar Plots excluded) Mathematical preliminaries, Nyquist Stability criterion, (Systems with transportational ge excluded) Introduction to lead, lag and lead-lag compensating networks (excluding design). Module 5: Introduction to Digital Control System Module 5: Introduction to Digital Control System Solventum Analysis of Sampling process, Signal reconstruction, Difference equations. Introduction to State variables analysis: Introduction, Concept of State, State variables & State model, State model for Linear Continuous & Discrete time system Diagonalization. Reference Books Control Systems, K.R. Varmah, McGraw hill Control System Engineering, D. Roy Chowdhuri, PHI	Module 1: Introduct	ion to Control Systems		8			20	
Concepts of stability, Necessary conditions for Stability, Routh stability criterion, Relative stability analysis: more on the Rout stability criterion, Introduction to Root-Locus Techniques, The root locus concepts, Construction of root loci. Module 4: Frequency domain analysis and stability 8 20 Correlation between time and frequency response, Bode Plots, Experimental determination of transfer function. Introduction to Polar Plots, (Inverse Polar Plots excluded) Mathematical preliminaries, Nyquist Stability criterion, (Systems with transportational general excluded) Introduction to lead, lag and lead-lag compensating networks (excluding design). Module 5: Introduction to Digital Control System 8 20 Introduction, Spectrum Analysis of Sampling process, Signal reconstruction, Difference equations. Introduction to State variables analysis: Introduction, Concept of State, State variables & State model, State model for Linear Continuous & Discrete time system Diagonalization. Reference Books 2 Control systems, K.R. Varmah, McGraw hill 3 Control System Engineering, D. Roy Chowdhuri, PHI	graphs. Module 2: Time Res Standard test signals	ponse of feedback control systems , Unit step response of First and Second order	Systems. Time	8 response specific	catio	ons, Ti	20 me re	espons
Stability criterion, Introduction to Root-Locus Techniques, The root locus concepts, Construction of root loci. Module 4: Frequency domain analysis and stability 8 20 Correlation between time and frequency response, Bode Plots, Experimental determination of transfer function. Introduction to Polar Plots, (Inverse Polar Plots excluded) Mathematical preliminaries, Nyquist Stability criterion, (Systems with transportational lag excluded) Introduction to lead, lag and lead-lag compensating networks (excluding design). Module 5: Introduction to Digital Control System 8 20 Introduction, Spectrum Analysis of Sampling process, Signal reconstruction, Difference equations. Introduction to State variables analysis: Introduction, Concept of State, State variables & State model, State model for Linear Continuous & Discrete time system Diagonalization. Reference Books 2 Control systems, K.R. Varmah, McGraw hill 3 Control System Engineering, D. Roy Chowdhuri, PHI		analysis		8			20	
Correlation between time and frequency response, Bode Plots, Experimental determination of transfer function. Introduction to Polar Plots, (Inverse Polar Plots excluded) Mathematical preliminaries, Nyquist Stability criterion, (Systems with transportational general excluded) Introduction to lead, lag and lead-lag compensating networks (excluding design). Module 5: Introduction to Digital Control System 8 20 Introduction, Spectrum Analysis of Sampling process, Signal reconstruction, Difference equations. Introduction to State variable analysis: Introduction, Concept of State, State variables & State model, State model for Linear Continuous & Discrete time system Diagonalization. Reference Books 2 Control systems, K.R. Varmah, McGraw hill 3 Control System Engineering, D. Roy Chowdhuri, PHI	•	· · · · · · · · · · · · · · · · · · ·				more	on the	Rout
Polar Plots, (Inverse Polar Plots excluded) Mathematical preliminaries, Nyquist Stability criterion, (Systems with transportational lag excluded) Introduction to lead, lag and lead-lag compensating networks (excluding design). Module 5: Introduction to Digital Control System 8 20 Introduction, Spectrum Analysis of Sampling process, Signal reconstruction, Difference equations. Introduction to State variables analysis: Introduction, Concept of State, State variables & State model, State model for Linear Continuous & Discrete time system Diagonalization. Reference Books 2 Control systems, K.R. Varmah, McGraw hill 3 Control System Engineering, D. Roy Chowdhuri, PHI	Module 4: Frequenc	y domain analysis and stability		8			20	
Introduction, Spectrum Analysis of Sampling process, Signal reconstruction, Difference equations. Introduction to State variable analysis: Introduction, Concept of State, State variables & State model, State model for Linear Continuous & Discrete time system Diagonalization. Reference Books 2	Polar Plots, (Inverse	Polar Plots excluded) Mathematical preliminaries,	Nyquist Stability	y criterion, (Syste				
analysis: Introduction, Concept of State, State variables & State model, State model for Linear Continuous & Discrete time system Diagonalization. Reference Books 2	Module 5: Introduct	ion to Digital Control System		8			20	
2 Control systems, K.R. Varmah, McGraw hill 3 Control System Engineering, D. Roy Chowdhuri, PHI	•			•				
3 Control System Engineering, D. Roy Chowdhuri, PHI	Reference Books							
		2 Control systems, K.R. Varmah, McGraw h	11					
4 Digital Control system, B.C. Kuo, Oxford University Press.	-	3 Control System Engineering, D. Roy Chow	dhuri, PHI					
		4 Digital Control system, B.C. Kuo, Oxford	University Press.					

5	Control System Engineering, I. J. Nagrath& M. Gopal. New AgeInternational Publication
6	Modern Control Engineering, K. Ogata, 4th Edition, Pearson Education

Course title:	M	icroprocessor and Microcontroller	Sub cod	le:				
			Structu	re:	L	Т	P	C
			<u> </u>		2	1	2	4
Course Objectives	:	This subject deals about the basic 16-bit of architecture, internal organization and the processors/ controllers.						
Course Outcome:		 Understand the architecture, instruction microcontrollers. Analyze and design digital systems usi microprocessors. Gain proficiency in interfacing periphe Explore embedded system design conc software development tools. Develop practical skills in programmin 	ng assembly la eral devices and epts including	nguage progr l implementin real-time ope	amn g in ratin	ning put/o	for output stems	operations.
Content		systems for various applications.		No. of hour	s	E	SE M	larks(%)
Module 1: 8086 A	rchited	cture		8				20
	ı, Mem	ta, Memory accessing. 8086 minimum/maximum ory organization, Paging.	n mode system.	, Real and Pro	otect	ed m	odes	of operation
Unconditional bran	nch ins	uctions, Arithmetic instructions, Bit manipula tructions, Processor control instructions, Overvi trupt applications, Multiple interrupts, 8259 a int	iew of 8086 in	terrupts respo	onse	s, 80	86 in	terrupt types
Module 3: Keyboa	ard &	Display interfacing		8				20
-	_	erfacing LED displays, 8279 keyboard/ display ration, Interface considerations, Circuit connections		-	Pin	desc	riptio	n, Functional
Module 4: Advance	ced Mi	croprocessors		8				20
	ntium I	and Pentium pro architectures: RISC concepts I, Pentium III and Pentium 4 processors. RISC A	_	_				
Module 5: Introdu	uction	to Microcontrollers		8				20
design techniques i	nterfac ure, T	(MCS 51 family- 8051) - Architecture - Comparising of LCD, Stepper motor, Keyboard and ADC ypical application in automotive and other incitrollers.	/DAC using m	icrocontroller	s. St	udy	of mi	cro controlle
	1	D. Hall, "Microprocessor and Interfacing (8086), 2nd ed, TMI	ł				
	2	Gibson, "Microprocessor and Interfacing", 2nd						
	3	Triebel and Singh, "The 8088 and 8086 Microp Hardware and Applications", PHI		gramming, Ir	nterf	acing	,soft	ware,

4	Brey, "Intel Microprocessors, 8086 to Pentium and Pentium pro processor:Architecture, Programming and interfacing", 4th edition, PHI / Pearson
5	Ajay Deshmukh, "Microcontrollers (Theory and Applications) –TMH
6	M.A. Mazidi&J.G.Mazidi, The 8051 Microcontroller and Embedded systems 3rdIndian reprint, Pearson Education.
nts	
1	Microprocessor 8086 based development system
2	Simple arithmetic programs
3	Array manipulation programs
4	Code conversion programs
5	LED Bank interface
6	ADC ,DAC interface
7	Stepper Motor interface
8	Programming exercises in c and assembly language covering program and data memory
9	i/o port, Peripheral and external interrupt, power saving modes
10	Interfacing of devices like keys, relays, leads, seven segment, LCD Module, Matrix keyboard etc.
	5 6 1 2 3 4 5 6 7 8

Course title:	Signals and Systems	Sub code:							
	1	Structure:	L	T	P	С			
			2	1	2	4			
Course Objective:	This course aims to provide students with covering fundamental concepts such as s representations.	1	_		•				
	 Students will learn to analyze signals and systems in both continuous and discrete domains using tim domain and frequency domain methods, including techniques such as convolution, Fourier analysis, and Laplace transforms, enabling them to characterize and manipulate signals and systems effectively 								
	• Through theoretical study and practical exercises, students will gain insight into the stability of systems by examining the concept of Region of Convergence (ROC) in the context of signal and system analysis, enabling them to assess system stability and robustness.								
	This course will familiarize students with and systems, including Fourier transform with versatile tools for signal representat	s, Laplace transforms, and Z-tran	nsform	s, prov	iding th	nem			
Course Outcome:	 Understand the fundamentals of signals, systems, and their mathematical representations. Analyze linear time-invariant (LTI) systems using convolution, Fourier analysis, and Laplace transforms. 								
	 Gain proficiency in analyzing signals and systems in both time and frequency domains. 								
	• Explore applications of signal and system theory in communication, control, and signal processing.								
	Develop problem-solving skills for desig engineering applications.	ning and analyzing linear system	s and f	ilters f	or vario	ous			
Content	1	No. of hours	E	SE M	arks(%	(b)			
	paces	8			20				

Module 2: Class	ssificat	ion of signals and systems	8	20
of CT and DT sig	gnals –	(CT signals)- Discrete time signals (DT signals) – Step, Ramp, Pulse, Imprepriodic and aperiodic signals, random signals, Energy & Power signals - CME INVARIANT SYSTEMS.		
Module 3: Spect	tral ana	alysis of continuous time signals	8	20
FT, systems ch Magnitude and	naracter phase r	riodic Signals by continuous FT, FT of periodic signals, convolution and murized by Linear Constant Coefficient Differential Equations. Magnitude response of LTI systems, Time domain and Frequency domain aspects of idutation of periodic signals.	and phase repre	esentation of FT
Module 4: Sam	npling		8	20
		ct of under sampling. DTFT and Spectral analysis of sampled signal. DFT. ultiplication property, Duality, Systems characterized by Linear Constant		
Module 5: Char	acteriz	ration of continuous time and discreate time LTI Systems	8	20
standard signals- Z-transform, Reg	-Properto Solution	ties-Inverse Laplace transforms-the S-plane and BIBO stability-Transfer on of differential equations with initial conditions. Application in continuous convergence and its properties, Inverse Z transform, properties of ZT, Analysis	functions-Syste s time signal and ysis andcharacte	m Response to system analysis
standard signals- Z-transform, Reg systems using ZT analysis.	-Propert Solutio gion of α Γ, LTI S	ties-Inverse Laplace transforms-the S-plane and BIBO stability-Transfer on of differential equations with initial conditions. Application in continuous	functions-Syste s time signal and ysis andcharacte	m Response to system analysis
standard signals- Z-transform, Reg systems using ZT	-Propert Solutio gion of α Γ, LTI S	ties-Inverse Laplace transforms-the S-plane and BIBO stability-Transfer on of differential equations with initial conditions. Application in continuous convergence and its properties, Inverse Z transform, properties of ZT, Analysis	functions-Syste s time signal and ysis andcharacte	m Response to system analysis
standard signals- Z-transform, Reg systems using ZT analysis.	-Propert Solutio gion of α Γ, LTI S	ties-Inverse Laplace transforms-the S-plane and BIBO stability-Transfer on of differential equations with initial conditions. Application in continuous convergence and its properties, Inverse Z transform, properties of ZT, Analysis	functions-Syste s time signal and ysis andcharacte cation in discrea	m Response to I system analysis rization of LTI te time system
standard signals- Z-transform, Reg systems using ZT analysis.	Proper Solution of G	ties-Inverse Laplace transforms-the S-plane and BIBO stability-Transfer on of differential equations with initial conditions. Application in continuous convergence and its properties, Inverse Z transform, properties of ZT, Analysystems, System function algebra and block diagram representations. Appli	functions-Syste stime signal and ysis andcharacte cation in discrea	m Response to I system analysis rization of LTI te time system
standard signals- Z-transform, Reg systems using ZT analysis.	Propert Solution of G	ties-Inverse Laplace transforms-the S-plane and BIBO stability-Transfer on of differential equations with initial conditions. Application in continuous convergence and its properties, Inverse Z transform, properties of ZT, Analysystems, System function algebra and block diagram representations. Appli Alan V. Oppenheim, Alan S. Willsky, S. Hamid Nawab, Signals and Syst Edition, 2009. John G. Proakis, Dimitris G. Manolakis, Digital Signal Processing, Princi	functions-Syste s time signal and ysis andcharacte cation in discrea ems PrenticeHal	m Response to I system analysis rization of LTI te time system
standard signals- Z-transform, Reg systems using ZT analysis.	Propert Solution Grant Solution of Cr. LTI Solution 1	ties-Inverse Laplace transforms-the S-plane and BIBO stability-Transfer on of differential equations with initial conditions. Application in continuous convergence and its properties, Inverse Z transform, properties of ZT, Anal Systems, System function algebra and block diagram representations. Appli Alan V. Oppenheim, Alan S. Willsky, S. Hamid Nawab, Signals and Syst Edition, 2009. John G. Proakis, Dimitris G. Manolakis, Digital Signal Processing, Princi and Applications, 4th Edition, PHI, 2007.	functions-Syste s time signal and ysis andcharacte cation in discrea ems PrenticeHal	m Response to I system analysis rization of LTI te time system
standard signals- Z-transform, Reg systems using ZT analysis.	Propert Solution gion of β F, LTI S	ties-Inverse Laplace transforms-the S-plane and BIBO stability-Transfer on of differential equations with initial conditions. Application in continuous convergence and its properties, Inverse Z transform, properties of ZT, Anal Systems, System function algebra and block diagram representations. Application, 2009. Alan V. Oppenheim, Alan S. Willsky, S. Hamid Nawab, Signals and Syst Edition, 2009. John G. Proakis, Dimitris G. Manolakis, Digital Signal Processing, Princi and Applications, 4th Edition, PHI, 2007. B.P. Lathi, —Signals, Systems & Communicationsl, 2009, BS Publication	functions-Syste stime signal and ysis andcharacte cation in discrease ems PrenticeHall ples,Algorithms	m Response to system analysis rization of LTI te time system
standard signals- Z-transform, Reg systems using ZT analysis.	Propert Solution gion of β F, LTI S	ties-Inverse Laplace transforms-the S-plane and BIBO stability-Transfer on of differential equations with initial conditions. Application in continuous convergence and its properties, Inverse Z transform, properties of ZT, Anal Systems, System function algebra and block diagram representations. Application, 2009. Alan V. Oppenheim, Alan S. Willsky, S. Hamid Nawab, Signals and Systedition, 2009. John G. Proakis, Dimitris G. Manolakis, Digital Signal Processing, Princi and Applications, 4th Edition, PHI, 2007. B.P. Lathi, —Signals, Systems & Communicationsl, 2009, BS Publication Simon Hykin, "Signals and Systems", John Wiley	functions-Syste s time signal and ysis andcharacte cation in discrea ems PrenticeHal ples,Algorithms s.	m Response to I system analysis rization of LTI te time system Il India, 2nd
standard signals- Z-transform, Reg systems using ZT analysis.	Properticular Solution of Gr. LTI S	ties-Inverse Laplace transforms-the S-plane and BIBO stability-Transfer of differential equations with initial conditions. Application in continuous convergence and its properties, Inverse Z transform, properties of ZT, Analysystems, System function algebra and block diagram representations. Application, 2009. Alan V. Oppenheim, Alan S. Willsky, S. Hamid Nawab, Signals and Systedition, 2009. John G. Proakis, Dimitris G. Manolakis, Digital Signal Processing, Princi and Applications, 4th Edition, PHI, 2007. B.P. Lathi, —Signals, Systems & Communicationsl, 2009, BS Publication Simon Hykin, "Signals and Systems", John Wiley Robert A. Gable, Richard A. Roberts, Signals & Linear Systems, 3rd Editions and Systems.	functions-Syste s time signal and ysis andcharacte cation in discrea ems PrenticeHal ples,Algorithms s.	m Response to I system analysis rization of LTI te time system Il India, 2nd

List of Experiments (10 Practicals)

Module 1: Signal Basics and LTI Systems

1. Generation and Visualization of Standard Signals

Objective: Generate and plot continuous-time and discrete-time signals: step, ramp, exponential, sinusoidal, and impulse. Tools: MATLAB/Scilab/Python

2. Operations on Signals

Objective: Perform and plot operations like scaling, shifting, folding, and addition on signals.

3. Verification of Linearity and Time Invariance of Systems

Objective: Test whether a given discrete-time system is linear and time-invariant using example inputs and outputs.

Module 2 & 3: Fourier Series and Fourier Transform

4. Fourier Series Representation of Periodic Signals

Objective: Compute and plot the Fourier series coefficients of a square/triangular waveform and reconstruct the waveform using limited harmonics.

5. Computation and plotting of Fourier Transform

Objective: Find the Fourier Transform of a given time-domain signal (e.g., rectangular pulse) and plot its magnitude and phase spectrum.

Module 4: Laplace Transform

6. System Response using Laplace Transform

Objective: Use Laplace transform to find system response to standard inputs (step, impulse) and compare time-domain and Laplace-domain results.

Module 5: DTFT and DFT, Z transform

7. Sampling and Reconstruction of Signals

Objective: Demonstrate the effect of sampling and reconstruction using sinc interpolation. Analyze aliasing with undersampling.

8. Compute and Plot DTFT and DFT of Discrete-Time Signals

Objective: Use MATLAB/Python to compute DTFT and DFT, and visualize the spectral content of a discrete-time signal.

9. Computation and Plotting of Z-Transform and Inverse Z-Transform

Objective: Determine and plot the Z-transform of basic sequences. Find inverse Z-transform using partial fractions.

Integrated Application

10. Analysis of LTI System using Convolution and Z-Transform

Objective: Implement an LTI system described by a difference equation. Use convolution and Z-transform to compute and verify the system's response.

Course title:	ANA	LOG ELECTRONICS	Sub code:				
			Structure	: L	T	P	С
			L	2	1	2	4
Course Objective		 To impart foundational know continuous time domain, em To equip students with skills 	nphasizing analysis s to analyze, design	s, design, and a	pplica	ntion of nalog	f analog circuits. electronic circuits
		commonly used in various e abilities.	ngineering discipli	ines, fostering	eritica	il think	and problem-solving
Course Outcom	ne:	 Understand the principles an FETs. 	nd characteristics o	f analog electr	onic c	levices	s such as diodes, BJTs, and
		Analyze and design analog e	electronic circuits i	including ampl	ifiers,	oscilla	ators, and filters.
		 Gain proficiency in biasing t circuits. 	techniques, small-s	signal analysis	and t	reque	ncy response of analog
		Explore advanced topics suc	ch as feedback amp	olifiers, operati	onal a	mplifi	ers, and voltage regulators
		 Develop practical skills in civarious applications. 	ircuit simulation, p	prototyping, and	d testi	ng of a	analog electronic circuits fo
Content	<u>l</u>			No. of hours	E	SE Ma	arks(%)
Module-1: BJT	Characte	ristics and Biasing Techniques		8			20
runaway, Design	of BJT bia		, Collector-to-base		divide	r bias,	
		nal Models and Amplifiers lels (hybrid- π and r e models), C	TE CD CC amplif	ior analysis; ys	ltogo	goin i	20
Multistage amplif	ier concep	ts: cascade and cascode configur andwidth estimation.					
Module 3: Feed	back Am	plifiers and Oscillators		8			20
	-	sitive feedback in amplifiers, Vol Barkhausen criterion, RC phase s					
Module 4: MOS	SFET Cha	racteristics and Amplifier Con	figurations	8			20
techniques for Mo amplifier and swit inverter and digita	OSFETs, S sch, Freque al logic app	es (Enhancement and Depletion Small signal analysis of common ency response of MOSFET ampliful plications.	source, common d fiers, Comparison	Irain, and comi	non g	ate coi	nfigurations. MOSFET as a
Module 5: Powe	er Amplifi	iers and Linear Regulators		8			20
with resistive and distortion, Class Linear Voltage	d transforr AB opera Regulato	aplifiers: Class A, B, AB, and C, oner load, Class B push-pull amplition and efficiency. rs: Types of voltage regulators-sergulation. Short circuit protection	lifier and crossover	r			
Reference Book	XS .			<u> </u>			
	1 Sedi	ra, Adel S. and Smith, Kenno	eth C.				
		roelectronic Circuits					

		Oxford University Press, India
	2	Millman, Jacob and Halkias, Christos C.
		Electronic Devices and Circuits
		McGraw-Hill Education (India)
	3	Boylestad, Robert L. and Nashelsky, Louis
		Electronic Devices and Circuit Theory
		Pearson Education, India
	4	Mottershead, Allen
		Electronic Devices and Circuits: An Introduction
		Pearson Education, India
	5	Salivahanan, S. and Kumar, N. Suresh
		Electronic Devices and Circuits
		McGraw-Hill Education (India)
list of Experin	nonta	· · ·
list of Experim	nemis	
	1	Design and Implementation of Voltage Divider Biasing Circuit
		To design a voltage divider bias circuit for a BJT and determine its operating point $(Q$ -point).
	2	Single Stage CE Amplifier – Gain and Impedance Measurement
		To design and implement a CE amplifier and measure voltage gain, input/output impedance.
	3	Two-Stage RC Coupled Amplifier
		To design and analyze a two-stage RC coupled amplifier and determine overall gain and bandwidth.
	4	Frequency Response of CE Amplifier
		To study low-frequency and high-frequency response and determine bandwidth and cutoff frequencies.
	5	RC Phase Shift Oscillator using BJT
		To design and implement a phase shift oscillator and verify frequency of oscillation using Barkhausen
		criterion.
	6	Wien Bridge Oscillator using Op-Amp or BJT
	7	To construct a Wien bridge oscillator and analyze output waveform and frequency.
	7	Colpitts Oscillator using BJT
	8	To design and implement a Colpitts oscillator circuit and verify its frequency of oscillation. MOSFET Output and Transfer Characteristics
	0	To obtain the output and transfer characteristics of an enhancement-type MOSFET and extract threshold
		voltage.
	9	Common Source MOSFET Amplifier
		To implement and analyze a common source amplifier and measure voltage gain and frequency response.
	10	MOSFET as a Switch
	10	To demonstrate the switching behavior of a MOSFET for digital signal interfacing.
	11	Class A Power Amplifier with Transformer Coupling
		To design and analyze a Class A power amplifier and determine efficiency.
	12	Design and Testing of Linear Voltage Regulator Circuit
		To design and implement a series-type voltage regulator and measure line/load regulation and short-circuit
		protection.
I	<u> </u>	1.*

Course title:	Electromagnetics and Field Theory	Sub code:				
		Structure:	L	Т	P	С
			2	1	0	3

Course Objective:	 To provide basic skill required to understand at To enrich strong foundation on systems in mode To develop an understanding on Electromagnet To develop a strong understanding on Antenna 	ern communication	n	
Course Outcome:	 Understand the fundamental principles of electr various mediums. Analyze and solve electromagnetic problems us 	omagnetic fields		
	 conditions. Gain proficiency in understanding wave propag Explore applications of electromagnetic theory 	ation, transmissio	n lines,	and antenna theory.
	 engineering, and photonics. Develop problem-solving skills for designing arraystems. 			
Content	systems.	No. of hou	irs	ESE Marks(%)
Module 1: Vector calcu	lus		2	5
Orthogonal Coordinate Sinterpretations; Laplacia:	ystem, Transformations of coordinate systems; Del opera	tor; Gradient,Dive	ergence,	Curl - their physical
Module 2: Electrostation	_		8	20
Applications, Electric Po Energy Density, Convec	e Field Intensity – Fields due to Different Charge Distributential, Relations Between E and V, Maxwell's Two Equation and Conduction Currents, Dielectric Constant, Isotro	ations for Electro	static Fi neous D	ields, Electric dipole ielectrics, Continuity
Equation, Relaxation Ti Illustrative Problems.	me, Poisson's and Laplace's Equations, Capacitance –	Parallel Plate, Co	oaxial, S	Spherical Capacitors

Module 3: Magneto statics & Maxwell's Equations

10 25

Biot-Savart Law, Ampere's Circuital Law and Applications, Magnetic Flux Density, Maxwell's Two Equations for Magneto static Fields, Magnetic Scalar and Vector Potentials, Forces due to Magnetic Fields, Magnetic torque and moment, Magnetic dipole, Inductances and Magnetic Energy, Illustrative Problems.

Inconsistency of Ampere's Law and Displacement Current Density, Maxwell's Equations in Different Final Forms and Word Statements. Boundary Conditions of Electromagnetic fields: Dielectric-Dielectric and Dielectric-Conductor Interfaces, Illustrative Problems.

Module 4: EM Wave Characteristics

10

25

2.5

Wave Equations for Conducting and Perfect Dielectric Media, Uniform Plane Waves - Definition, All Relations between E & H, Sinusoidal Variations, Wave Propagation in Lossless and Conducting Media, Conductors & Dielectrics - Characterization, Wave Propagation in Good Conductors and Good Dielectrics, Polarization, Reflection and Refraction of Plane Waves - Normal and Oblique Incidences, for both Perfect Conductor and Perfect Dielectrics, Brewster Angle, Critical Angle and Total Internal Reflection, Surface Impedance, Pointing Vector, and Pointing Theorem - Applications, Power Loss in a Plane Conductor, Illustrative Problems

Module 5: Transmission Lines & Antennas

10

Transmission Lines: Types, Transmission line parameters (Primary and Secondary), Transmission line equations, Input impedance, Standing wave ratio & power, Smith chart & its applications, Applications of transmission lines of various lengths, Micro- strip transmission lines – input impedance, Illustrative Problems.

Antenna Concepts, Antenna Characteristic; Hertzian dipole (Radiation Fields, Radiation Resistance, Radiation patterns, Directive Gain); Properties and typical applications of Half-wavedipole, Loop antenna, parabolic reflector anteena Horn antenna, Yagi-Uda array, Array Antennas: End fire and Broadside array

Reference Books

1	Principles of Electromagnetics, 4th Edition, Matthew O H Sadiku, Oxford University Press.
2	Electromagnetic Field Theory & Transmission Lines, G.S.N. Raju, Pearson Education
3	Electromagnetic Waves Shevgaonkar, Tata-McGaw-Hillr -R K

4	Engineering Electromagnetics, 2ed Edition - Nathan Ida, Springer India
5	Fields & Waves in Communication Electronics, S. Ramo, J. R. Whinnery& T. VanDuzer, John
	Wiley
6	Electromagnetic Theory & Applications, A. K. Saxena, Narosa Publishing House Pvt.
	Ltd.
7	Electromagnetics, 2ed Edition – J. A. Edminister, Tata-McGraw-Hill.
8	Engineering Electromagnetics, 7th Edition-W.H.Hayt& J. A. Buck, Tata-McGraw-Hill
	•

Course title:	Analog Communication	Sub code:				
		Structure:	L	T	P	С
			2	1	2	4
Course Objective:	This course aims to provide students with a compreher and components of analog communication systems, co and transmission techniques.					
	 Students will learn to analyze and evaluate different ar including amplitude modulation (AM), frequency mod enabling them to comprehend their applications and per 	ulation (FM), and ph	nase mo			-
	 Through theoretical study and practical demonstrations various transmitters and receivers used in analog communderstanding of signal generation, transmission, recept 	nunication systems,	facilitati	ng th	eir	ration of
	• This course will enable students to understand the effe and its impact on signal quality, signal-to-noise ratio (st them to mitigate noise-induced distortions and enhance	SNR), and system pe	_			
	 Students will acquire knowledge about information the communication systems, including channel capacity, b efficiency, enabling them to optimize system design ar transmission. 	andwidth considerat	ions, an	d tran	smissi	
Course Outcome:	 Understand the principles of analog modulation technic frequency modulation (FM), and phase modulation (PM) 		itude mo	odula	tion (A	λM),
	 Analyze the performance of analog communication sysbandwidth, and distortion. 	stems in terms of sig	nal-to-n	oise 1	ratio,	
	 Gain proficiency in designing and implementing analoreceivers, and transmission lines. 	g communication sy	stems in	cludi	ng trai	nsmitters,
	 Explore advanced topics such as frequency synthesis, particular techniques in analog communication. 	phase-locked loops,	and nois	e red	uction	
	 Develop practical skills in laboratory experiments, sim systems using modern instruments and tools. 	ulation, and testing o	of analo	g con	nmunio	cation
Content		No. of hours	ESE M	larks	(%)	

Content	No. of hours	ESE Marks(%)
Module 1: Basics of Amplitude Modulation	8	20

Elements of communication systems, Information, Messages and Signals, Modulation, Modulation Methods, Modulation Benefits and Applications. Amplitude Modulation & Demodulation: Baseband and carrier communication, Amplitude Modulation (AM), Rectifier detector, Envelope detector, Double sideband suppressed carrier (DSB-SC) modulation & its demodulation, Switching modulators, Ring modulator, Balanced modulator, Frequency mixer, sideband and carrier power of AM, Generation of AM signals, Quadrature amplitude modulation (QAM), Single sideband (SSB) transmission, Time domain representation of SSB signals & their demodulation schemes (with carrier, and suppressed carrier), Generation of SSB signals, Vestigial sideband (VSB) modulator & demodulator, Illustrative Problems.

Module 2: Angle Modulation & Demodulation	8	20

Concept of instantaneous frequency, Generalized concept of angle modulation, Bandwidth of angle modulated waves – Narrow band frequency modulation (NBFM); and Wide band FM (WBFM), Phase modulation, Verification of Frequency modulation bandwidth relationship, Features of angle modulation, Generation of FM waves – Indirect method, Direct generation; Demodulation of FM, Band pass limiter, Practical frequency demodulators, Small error analysis,

Module 3: Noise in Communication Systems

8

20

Types of noise, Time domain representation of narrowband noise, Filtered white noise, Quadrature representation of narrowband noise, Envelope of narrowband noise plus sine wave, Signal to noise ratio & probability of error, Noise equivalent bandwidth, Effective noise temperature, and Noise figure, Baseband systems with channel noise, Performance analysis (i.e. finding SNR expression) of AM, DSB-SC, SSB-SC,FM, PM in the presence of noise, Illustrative Problems.

Module 4: Analog pulse modulation schemes

8

20

Pulse amplitude modulation – Natural sampling, flat top sampling and Pulse amplitude modulation (PAM)& demodulation, Pulse-Time Modulation – Pulse Duration and Pulse Position modulations, and demodulation schemes, PPM spectral analysis, Illustrative

Module 5: Radio Receivers

8

20

Pre-emphasis, & De-emphasis filters, FM receiver, FM Capture Effect,. Carrier Acquisition- phased locked loop (PLL), Costas loop, Frequency division multiplexing (FDM), and Super-heterodyne AM receiver, Sensitivity and selectivity, selection of IF, Illustrative Problems.

1 B. P. Lathi, "Modern Digital and Analog Communication Systems," Oxford Univ. press, 3rd Edition, 2006 2 Sham Shanmugam, "Digital and Analog Communication Systems", WileyIndia edition, 2006. 3 A. Bruce Carlson, & Paul B. Crilly, "Communication Systems – An Introduction toSignals & Noise in Electrical Communication", McGraw-Hill International Edition, 5th Edition, 2010. 4 Simon Haykin, "Communication Systems", Wiley-India edition, 3 rd edition, 2010. 5 Herbert Taub& Donald L Schilling, "Principles of Communication Systems", Tata McGraw-Hill, 3rd Edition, 2009. 6 George Kennedy and Bernard Davis, "Electronics & Communication System", TMH,2004.			
press, 3rd Edition, 2006 2 Sham Shanmugam, "Digital and Analog Communication Systems", WileyIndia edition, 2006. 3 A. Bruce Carlson, & Paul B. Crilly, "Communication Systems – An Introduction toSignals & Noise in Electrical Communication", McGraw-Hill International Edition, 5th Edition, 2010. 4 Simon Haykin, "Communication Systems", Wiley-India edition, 3 rd edition, 2010. 5 Herbert Taub& Donald L Schilling, "Principles of Communication Systems", Tata McGraw-Hill, 3rd Edition, 2009. 6 George Kennedy and Bernard Davis, "Electronies & Communication System", TMH,2004. list of Experiments 1 Amplitude modulation and demodulation 2 Frequency modulation and demodulation. 3 Characteristics of Mixer 4 Pre-emphasis & de-emphasis. 5 Pulse Amplitude Modulation and demodulation 6 Pulse Width Modulation and demodulation 7 Pulse Position Modulation and demodulation 8 Radio Receiver measurements – Sensitivity, Selectivity, & Fidelity 9 Sampling Theorem – verification	Reference Books		
edition, 2006. 3 A. Bruce Carlson, & Paul B. Crilly, "Communication Systems – An Introduction to Signals & Noise in Electrical Communication", McGraw-Hill International Edition, 5th Edition, 2010. 4 Simon Haykin, "Communication Systems", Wiley-India edition, 3 rd edition, 2010. 5 Herbert Taub& Donald L Schilling, "Principles of Communication Systems", Tata McGraw-Hill, 3rd Edition, 2009. 6 George Kennedy and Bernard Davis, "Electronics & Communication System", TMH,2004. list of Experiments 1 Amplitude modulation and demodulation 2 Frequency modulation and demodulation. 3 Characteristics of Mixer 4 Pre-emphasis & de-emphasis. 5 Pulse Amplitude Modulation and demodulation 6 Pulse Width Modulation and demodulation 7 Pulse Position Modulation and demodulation 8 Radio Receiver measurements – Sensitivity, Selectivity, & Fidelity 9 Sampling Theorem – verification		1	
in Electrical Communication", McGraw-Hill International Edition, 5th Edition, 2010. 4 Simon Haykin, "Communication Systems", Wiley-India edition, 3 rd edition, 2010. 5 Herbert Taub& Donald L Schilling, "Principles of Communication Systems", Tata McGraw-Hill, 3rd Edition, 2009. 6 George Kennedy and Bernard Davis, "Electronics & Communication System", TMH,2004. list of Experiments 1 Amplitude modulation and demodulation 2 Frequency modulation and demodulation. 3 Characteristics of Mixer 4 Pre-emphasis & de-emphasis. 5 Pulse Amplitude Modulation and demodulation 6 Pulse Width Modulation and demodulation 7 Pulse Position Modulation and demodulation 8 Radio Receiver measurements – Sensitivity, Selectivity, & Fidelity 9 Sampling Theorem – verification		2	
5 Herbert Taub& Donald L Schilling, "Principles of Communication Systems", Tata McGraw-Hill, 3rd Edition, 2009. 6 George Kennedy and Bernard Davis, "Electronics & Communication System", TMH,2004. list of Experiments 1 Amplitude modulation and demodulation 2 Frequency modulation and demodulation. 3 Characteristics of Mixer 4 Pre-emphasis & de-emphasis. 5 Pulse Amplitude Modulation and demodulation 6 Pulse Width Modulation and demodulation 7 Pulse Position Modulation and demodulation 8 Radio Receiver measurements – Sensitivity, Selectivity, & Fidelity 9 Sampling Theorem – verification		3	
McGraw-Hill, 3rd Edition, 2009. George Kennedy and Bernard Davis, "Electronics & Communication System", TMH,2004. Ilist of Experiments 1 Amplitude modulation and demodulation 2 Frequency modulation and demodulation. 3 Characteristics of Mixer 4 Pre-emphasis & de-emphasis. 5 Pulse Amplitude Modulation and demodulation 6 Pulse Width Modulation and demodulation 7 Pulse Position Modulation and demodulation 8 Radio Receiver measurements – Sensitivity, Selectivity, & Fidelity 9 Sampling Theorem – verification		4	Simon Haykin, "Communication Systems", Wiley-India edition, 3 rd edition, 2010.
list of Experiments 1		5	
1 Amplitude modulation and demodulation 2 Frequency modulation and demodulation. 3 Characteristics of Mixer 4 Pre-emphasis & de-emphasis. 5 Pulse Amplitude Modulation and demodulation 6 Pulse Width Modulation and demodulation 7 Pulse Position Modulation and demodulation 8 Radio Receiver measurements – Sensitivity, Selectivity, & Fidelity 9 Sampling Theorem – verification		6	George Kennedy and Bernard Davis, "Electronics & Communication System", TMH,2004.
2 Frequency modulation and demodulation. 3 Characteristics of Mixer 4 Pre-emphasis & de-emphasis. 5 Pulse Amplitude Modulation and demodulation 6 Pulse Width Modulation and demodulation 7 Pulse Position Modulation and demodulation 8 Radio Receiver measurements – Sensitivity, Selectivity, & Fidelity 9 Sampling Theorem – verification	list of Experiments	· ·	
3 Characteristics of Mixer 4 Pre-emphasis & de-emphasis. 5 Pulse Amplitude Modulation and demodulation 6 Pulse Width Modulation and demodulation 7 Pulse Position Modulation and demodulation 8 Radio Receiver measurements – Sensitivity, Selectivity, & Fidelity 9 Sampling Theorem – verification		1	Amplitude modulation and demodulation
4 Pre-emphasis & de-emphasis. 5 Pulse Amplitude Modulation and demodulation 6 Pulse Width Modulation and demodulation 7 Pulse Position Modulation and demodulation 8 Radio Receiver measurements – Sensitivity, Selectivity, & Fidelity 9 Sampling Theorem – verification		2	Frequency modulation and demodulation.
5 Pulse Amplitude Modulation and demodulation 6 Pulse Width Modulation and demodulation 7 Pulse Position Modulation and demodulation 8 Radio Receiver measurements – Sensitivity, Selectivity, & Fidelity 9 Sampling Theorem – verification		3	Characteristics of Mixer
6 Pulse Width Modulation and demodulation 7 Pulse Position Modulation and demodulation 8 Radio Receiver measurements – Sensitivity, Selectivity, & Fidelity 9 Sampling Theorem – verification		4	Pre-emphasis & de-emphasis.
7 Pulse Position Modulation and demodulation 8 Radio Receiver measurements – Sensitivity, Selectivity, & Fidelity 9 Sampling Theorem – verification		5	Pulse Amplitude Modulation and demodulation
8 Radio Receiver measurements – Sensitivity, Selectivity, & Fidelity 9 Sampling Theorem – verification		6	Pulse Width Modulation and demodulation
9 Sampling Theorem – verification		7	Pulse Position Modulation and demodulation
		8	Radio Receiver measurements – Sensitivity, Selectivity, & Fidelity
Time division multiplexing.		9	Sampling Theorem – verification
		10	Time division multiplexing.

Course Title:	Computer Architecture and Organization	Sub code:				
		Structure:	L	T	P	C
		-	2	0	2	3
Course Objective:	 This course aims to familiarize students with fundamental organization, covering hardware and software aspects such memory organization, input/output systems, and operating Students will gain an overview of the design principles unincluding topics such as instruction set architecture, proce hierarchy, and input/output interfaces. Through theoretical study and practical exercises, student represented at the machine level, including binary represe encoding schemes, floating-point representation, and menthem to understand how information is processed within a Students will gain insight into the execution of computation including arithmetic and logic operations, control flow me execution cycle, and addressing modes, enabling them to mechanisms of program execution and data manipulation 	h as CPU architects system functional derlying digital consistence of the system functions will learn how do not a computer system on a the machine echanisms, instruction of the unitary organization, a computer system on a the machine echanisms, instructions are the unitary organization.	ture, ality. computing secture, pipel ata is enabling the level, tion anderlying	ystem ining,		ory
Course Outcome:	 Understand the fundamental principles and components of including CPU, memory, and I/O devices. Analyze and design the organization of computer systems software levels. Gain proficiency in understanding the instruction set archimplications on system design. Explore advanced topics such as pipelining, memory hierarchitectures. Develop practical skills in designing and evaluating comp 	at both hardware itecture (ISA) and archy, and paralle	and its I processing	o d		
Content	simulation, prototyping, and performance analysis.	No. of hours	ESE Mai	rks (%	(o)	
Module 1: Introduc	etion of Processor	8		20		
	ologies for building Processors and Memory, Performance, The Signed and Unsigned numbers, Representing Instructions, I		-			
Module 2: Instructi	ons Set	8		20		
Program, Addition a	or 32-Bit Immediate and Addresses, Parallelism and Instruction and Subtraction, Multiplication, Division, Floating Point, Parang SIMD Extensions and Advanced Vector Extensions in x86.	•		-		_
Module 3: Architec	ture Building Block	8		20		
Data Hazards: Forwa	entions, building a Datapath, A Simple Implementation Scheme arding versus Stalling, Control Hazards, Exceptions, Parallelism es, Instruction –Level Parallelism and Matrix Multiply Hardward	via Instructions,	The ARM			
Module 4: Memory	Mapping	8		20		
Machines, Virtual M	es, Basics of Caches, Measuring and Improving Cache Perform Memory, Using FSM to Control a Simple Cache, Parallelism a Advanced Material: Implementing Cache Controllers.	•	•		•	
Module 5: Memory		8		20		
passing multiprocess		duction to multi-t	hreading cl	usters	, mes	sage
Text/Referen	nce Books:					

- 1. David A. Patterson and John L. Hennessey, "Computer organization and design, The Hardware/Software interface", Morgan Kauffman / Elsevier, Fifth edition, 2014
- 2. V. Carl Hamacher, Zvonko G. Varanesic, and Safat G. Zaky, "Computer Organization", 6 th edition, McGraw-Hill Inc, 2012.
- 3. William Stallings, "Computer Organization and Architecture", 8th Edition, PearsonEducation, 2010

List of 10 Practical Experiments

Module 1 & 2: Processor Basics and Instruction Set

1. Simulation of Basic Arithmetic Operations in MIPS Assembly

- o Objective: Write MIPS assembly code to perform addition, subtraction, multiplication, and division of two integers.
- o Tool: MIPS Simulator (e.g., QtSpim, MARS)

2. Binary and Hexadecimal Conversion & Representation

o Objective: Implement a program (in C or Assembly) to convert between binary, hexadecimal, and decimal formats; demonstrate signed and unsigned number representations.

3. Instruction Encoding and Decoding

o Objective: Manually encode and decode sample MIPS instructions and verify using a simulator.

Module 3: Datapath and Pipelining

4. Design a Basic Arithmetic Logic Unit (ALU) Using VHDL/Verilog

- Objective: Implement an ALU capable of performing AND, OR, ADD, SUB, and SLT operations.
- o Tool: Xilinx Vivado / ModelSim / Logisim

5. Simulate Single-Cycle and Multi-Cycle Datapaths

- Objective: Model a simplified processor datapath (single-cycle and pipelined) and compare performance.
- o Tool: Digital Simulator / Logisim / Ripes (RISC-V simulator)

6. Pipeline Hazard Detection and Resolution

 Objective: Simulate and analyze data and control hazards in a pipelined processor; demonstrate stalling and forwarding.

Module 4 & 5: Memory Mapping and Management

7. Cache Memory Simulation

- Objective: Simulate direct-mapped, fully-associative, and set-associative caches; compute hit/miss ratio.
- o Tool: Custom Python/C program or existing cache simulator tools.

8. Implementation of Virtual Memory using Paging

- Objective: Simulate address translation using page tables; demonstrate page faults and TLBs.
- o Tool: Python or Java-based simulation

9. Disk Scheduling Algorithm Simulation

 Objective: Implement and compare performance of FCFS, SSTF, SCAN, and LOOK disk scheduling algorithms.

10. RAID Level Simulation and Performance Comparison

• Objective: Simulate different RAID levels (RAID 0, 1, 5) and evaluate redundancy, speed, and fault tolerance.

Course Title:	Digital S	Signal Processing	Sub code	e:			
	<u>I</u>		Structur	re: L	Т	P	C
				2	0	2	3
Course Objective:		Learning about discrete time syste	ms and to learn	about FFT algor	ithms		
oomise orgenie		 Learning the design techniques for 		•	iumis.		
		Learning about Realization of Dig					
Course Outcome:		☐ Understand the principles and tech	niques of digita	al signal represen	tation ar	nd proc	essing.
		☐ Analyze and design digital filters f	_				
		Gain proficiency in time-domain a	nd frequency-d	omain analysis o	f discret	e-time	signals and
		systems. Explore advanced topics such as s	nectral analysis	adaptive filterin	g and n	nultirate	e sional
		processing.	gootial allary 515	, udupir e iliterii	g, una 11	101111111	, signar
		Develop practical skills in implem	enting signal p	cocessing algorith	ıms usin	g softw	are tools and
		programming languages.		1			
Content				No. of hours	ESI	E Mark	is(%)
Module 1: Introduction	to discre	ete time signals and systems		8			20
Overview of convolution	and corre	elation. Discrete Fourier Transform (DF)	and linear file	ering techniques	using th	e DFT.	Methods for
		mputation of the DFT and its optimization	_	-	trategy,	includii	ng the Radix-
		gorithm. Analysis of quantization effects	in DFT compu				20
Module 2: Implementa	tion of the	e Discrete time systems		8			20
		crete time FIR and IIR systems, Direct	Form, cascade	form, Data broad	d case s	ructure	, State space
system analysis and struc	ctures. Ro	und-off effects in digital filter.					
Module 3: Design of FI	R Digital	Filters		8			20
Magnitude and phase res	sponse of	digital filter, frequency response of Line	ear phase FIR f	ilters, Design Te	hniques	for FI	R (Low pass,
high pass, band pass and	band reje	ect) filters. Design of Optimal Linear pha	se FIR Filters,	Design of Minim	um phas	e FIR I	Filters.
Module 4: Design of III	R Digital	Filters		8			20
IIR filter design by appro	ximation	of derivatives, impulse invariant approac	h and bilinear tr	l ansformation. Bu	itterwor	h filter	s, Chebyshev
		d elliptic filters, Design of Low pass, hig					•
word length indigital filt	ers.						
Module 5: Spectral Est	imation n	nethods		8			20
-			1.4: 4		ET in a	4 1	
*		sity Spectrum, Estimation of autocorrection for power spectrum estimation.	elation and po	wer spectrum, L	PFI insj	pectrai (estimation,
T drameterie and nonpare		said for power spectrum estimation.					
Text/Reference Books :	:						
	1	Discrete Time Signal Processing, Opp	enheim & Sch	ofer PHII td Th	rd Editi	On.	
	2	Digital Signal Processing: Principles	Algorithms and	d Applications, F	roakis J	ohnand	Manolakis.
	3	Digital Signal Processing- A compute	r based approa	ch, Sanjit K. Mit	a, McG	rawHill	Education.
List of Experiments							
	1	Compute linear convolution, circular of	convolution and	d cross correlation	1 of two	segueno	ces.
						1	-
	2	Implementation of configurable DFT	and IDFT and s	pectral analysis.			
	3	Verify different properties of Discrete	Fourier Transf	orm			
	ر	verny americal properties of Dischete	i ourier realist	O1 111.			

4	Implement Radix-2 8-point FFT algorithm.
5	Linear filtering of signals using FFT and Overlap-Add and Overlap-Save methods.
6	Design and implementation of low pass, high pass, band pass and band reject FIRfilters.
7	Design and implementation of low pass, high pass, band pass and band reject IIR filters of different types.
8	Realization of IIR and FIR systems using direct form-I, II, and cascade form structures.
9	Spectral estimation using Periodogram and Welch methods.
10	Autocorrelation and power spectral density estimation using DFT.

Course title:	VLSI Design	Sub code:						
		Structure:	L	Т	P	С		
			2	1	2	4		
Course Objective:	 To provide students with a comp covering CMOS logic, fabrication verification techniques, preparing Students will learn to model MO logic circuits. They will understate transistor sizing, noise margin, and Through theoretical study and predelay and power characteristics in Students will explore various circuincluding static CMOS, ratioed on This module aims to familiarize station. 	n processes, layout representation of them for practical VLSI design of them for practical VLSI design of the principles behind CMOS and static and switching character actical exercises, students will go n VLSI circuits. The processes of the process of the pro	ons, design projects acteristics logic desiristics. ain proficules used its ss-transis	n flow , and dign, in eiency n VLS tor cir	design design in ana SI design	CMOS ng lyzing		
Course Outcome:	•							
	 Study the design and operation of specific digital system. Inspect how effectively ICs are eapplication. 	f semiconductor memories frequ	ently use	din ap	-			
	Design and diagnosis of processor	ors and I/O controllers used in en	nbeddeds	ystem	ıs.			
Content	I	No. of hours	ESE I	Marks	s (%)			
Module 1: Introdu	ction To VLSI	8		20				
	n CMOS Logic: Combinational and sequential cit diagrams, Design partitioning, Logic design, City, Design Flow				n, fabr	rication		
Module 2: MOS a	nd CMOS	8			20			
MOS Transistor Swit	ansistor, Capacitance voltage characteristics, non the ches, CMOS Logic design, Circuit and System R Sizing, Static and Switching Characteristics; Bod	epresentations, Design Equation				er,		
	ower	8						

Transient Response, RC Delay Model, Effective Resistance, Gate and Diffusion Capacitance, Equivalent RC Circuits, Transient Response, Elmore Delay, Layout Dependence of Capacitance, Determining Effective Resistance, Linear Delay Model Logical Effort, Parasitic Delay, Delay in a Logic Gate, Drive, Extracting Logical Effort from Datasheets, Limitations to the Linear Delay Model, Logical Effort of Paths, Delay in Multistage Logic Networks, Choosing the Best Number of Stages, Sources of power dissipation, dynamic power, static power, Wire Geometry, Example of Metal Stacks, Interconnect Modelling, Resistance, Capacitance Inductance, Skin Effect, Temperature Dependence, Interconnect Impact, Delay, Energy, Crosstalk, Inductive Effects,

Module 4: Circuit Design 8 20

Circuit Families, Static CMOS, Ratioed Circuits, Cascode Voltage Switch Logic, Dynamic Circuits, Pass-Transistor Circuits, Sequencing Static Circuits, Sequencing Methods, Max Delay Constraints, Min-Delay Constraints, Time Borrowing, Clock Skew, Circuit Design of Latches and Flip-Flops, Conventional CMOS Latches, Conventional CMOS Flip-Flops, Pulsed Latches, Resettable Latches and Flip-Flops, Enabled Latches and Flip-Flops, Incorporating Logic into Latches

Module 5: Subsystem Design FPGA	8	20

Adders, zero one detectors, comparators, counters, Memory subsystems SRAM, Read and write operation, DRAM, sense amplifiers Field Programmable gate arrays- Logic blocks, routing architecture, design flow technology mapping for FPGAs, Case studies Xilinx-Virtex-7 and Kintex-7 FPGAs.

Reference Books:

- 1. C. Mead and L. Conway, Introduction to VLSI Systems, Addison Wesley, 1979.
- 2. S. M. Kang and Y. Leblebici, CMOS Digital Integrated Circuits: Analysis and Design, Third Edition, MH, 2002
- 3. J. M. Rabaey, A. P. Chandrakasan and B. Nikolic, Digital Integrated Circuits: A Design Perspective, Second Edition, PHI /Pearson, 2003.
- 4. J. P. Uyemura, CMOS Logic Circuit Design, Springer; 2001,.
- 5. J. P. Uyemura, Introduction to VLSI Circuits and System, Wiley, 2002.
- 6. R. J. Baker, H. W. Li and D. E. Boyce, CMOS Circuit Design, Layout and Simulation, PH, 1997

List of Experiments:

- Based on VHDL (Xilinx) platform and implementation on FPGA boards:
 Logic expression s, modulo synchronous and asynchronous up down counters. Multiplexers/
 decoders, arithmetic logic unit, priority encoder,62 models based on Moore's law, mealy model
 etc.
- CADENCE CAD tool-based experiments:
 Design of MOS transistor circuits, DC characteristics, AC small signal analysis and extraction of parameters, design of sample and hold circuits, measurement of switching times, design of PLL and measurement of all characteristic's parameters, design of 3-8 decoder using MOS technology.

Course title:	Computer Network and security	Sub code:				
		Structure:	L	Т	P	С
			2	1	0	3
Course Objective:	 This course aims to teach the basic contopologies network devices. This course deal with the important concenable students to have an insight in to tepossible. 	cepts and techniques relate	ed to data o	comm	unicat	ion and

Course Outcome: • Understand the fundamentals of computer networks, including protocols, architectures, and networking technologies. Analyze and design network architectures for efficient data transmission, routing, and switching. · Gain proficiency in network security concepts, including cryptography, authentication, and access control. Explore advanced topics such as wireless networks, network management, and cloud computing. Develop practical skills in configuring and securing network devices, conducting vulnerability assessments, and implementing security measures to protect against cyber threats. ESE Marks (%) **Content** No. of hours **Module 1: Introduction** 6 14 Data Communications, Networks, The Internet, Protocols and Standards, Network Models, Layered Tasks, The OSI Model, Layers in the OSI Model, TCP/IP Protocol Suite, Addressing, Physical Layer and Media, Data and Signals, Analog and Digital, Periodic Analog Signals, Digital Signals, Transmission impairment, Data Rate Limits, Performance, Network topologies. Module 2: Physical and Data Link Layer 20 Bandwidth utilization: Multiplexing and Spreading, Multiplexing, Spread Spectrum, Transmission Media, Guided Media, Unguided Media: Wireless, Switching, Circuit-Switched Networks, Datagram Networks, Virtual-Circuit Networks, Structure of a Switch, Introduction, Block Coding, Liner Block Codes, Cyclic Codes, Checksum, Data Link Control, Framing, Flow and Error Control, Protocols, Noiseless Channels, HDLC, Point-to-Point Protocol, Multiple Access, Random Access, Aloha, Controlled Access, Channelization, IEEE Standards, Standard Ethernet, Changes in the Standard, Fast Ethernet, Gigabit Ethernet, IEEE 802.11, Bluetooth, Connecting LANs, Backbone Networks, and Virtual LANs, Connecting Devices, Backbone Networks, Virtual LANs, Sonet Networks, Virtual Tributaries, Virtual-Circuit Networks: Frame Relay and ATM, Frame Relay, ATM, ATM LANs. **Module 3: Network Layer and Transport layer** 20 Logical Addressing, IPv4 Addresses, IPv6 Addresses, Network Layer: Internet Protocol, Internetworking, IPv4, IPv6, Transition from IPv4 to IPv6, Network Layer: Address Mapping, Error Reporting and Multicasting, Address Mapping, ICMP, IGMP, ICMPv6, Network Layer: Delivery, Forwarding and Routing, Delivery, Forwarding, Unicast Routing Protocols, Multicast Routing Protocols. Process-Process Delivery: UDP, TCP and SCTP, Process-to-Process Delivery, User Datagram Protocol (UDP), TCP, SCTP, Congestion Control and Quality of Service, Data Traffic, Congestion, Congestion Control, Two Examples, Quality Service, Techniques to improve QoS, Integrated Services, Differentiated Services, QoS in Switched Networks. **Module 4: Application Layer** 16 Domain Name System, Name Space, Domain Name Space, Distribution of Name Space, DNS in the Internet, Resolution, DNS Messages, Types of Records, Registrars, Dynamic Domain Name System (DDNS), Encapsulation, Remote Logging, Electronic Mail and File Transfer, Remote Logging, Telnet, Electronic Mail, File Transfer, WWW and HTTP: Architecture, Web Documents, HTTP, Network Management: SNMP, Network Management System, Simple Network Management Protocol (SNMP), Multimedia, Digitizing Audio and Video, Audio and Video Compression, Streaming Stored Audio/Video, Streaming Live

Security concepts and terminology TCP/IP and OSI network security access control issues (packet filters, firewalls) communication security (OSI layer security protocols) security tools cryptography-Public Key Cryptography And Its Application, Cyber Security

Introduction to Wireless Sensor Networks, Sensor Node Architecture and Characteristics, Communication Protocols for Wireless Sensor Networks, Energy-Efficient Protocols and Algorithms, Applications and Challenges of Wireless Sensor Networks

12

30

Audio/Video, Real-Time Interactive Audio/Video, RTP, RTCP, Voice over IP.

and its application

Reference Books:

Module 5: Network Security and Introduction to Wireless Sensor Networks

- Data Communications and Networking, Fourth Edition by Behrouza A. Forouzan,TMH.
 Computer Networks, A.S. Tanenbaum,4th edition, Pearson education.
 Introduction to Data communications and Networking, W. Tomasi, Pearsoneducation.
 Data and Computer Communications, G.S. Hura and M. Singhal, CRC Press,Taylor and Francis Group.
 An Engineering Approach to Computer Networks-S. Keshav,2nd Edition, Pearson Education
 Understanding communications and Networks,3rd Edition, W. A. Shay, Cengage
 - Learning.7. "Modern Cryptography, Theory & Practice", Pearson Education. Wenbo Mao
 - 8. "Computer Security", Pearson Education. Matt Bishop

Course title:	Digital Communication	Sub code:							
		Structure:	L	T	P	С			
		I	2	1	2	4			
Course Objective:	Understanding the Key Modules of Dig Digital Modulation Techniques	ital Communication Systems v	vith E	Emphas	sis on	1			
	 Designing Systems Involving Randomr Simulations. 	ess Using Mathematical Analy	ysis aı	nd Cor	nputer	•			
	<u> </u>	• Learning about Theoretical Bounds on the Rates of Digital Communication Systems and Representing Digital Signals Using Several Modulation Methods							
		 Drawing Signal Space Diagrams, Computing Spectra of Modulated Signals, and Applying Redundancy for Reliable Communication. 							
Course Outcome:	Understand the principles and technique	Understand the principles and techniques of digital modulation and demodulation schemes.							
	 Analyze and design digital communicat ASK, FSK, PSK, and QAM. 	That ye and design digital communication systems using modulation techniques such as							
	Gain proficiency in error detection and correction codes for reliable digital communication.								
	 Explore advanced topics including spread spectrum communication and multiple access techniques. 								
	Develop practical skills in simulation, implementation, and performance analysis of digital								
	communication systems using software tools and laboratory experiments.								
Content		No. of hours	ES	E Mai	rks (%	(a)			
Module 1: Random	Variables and Random Process	8			20				
D. (1 D	andom Signal: Types of random variables, cumulative	distailmention from etion and much	- 1- :1:4-		4 C	-4:			

Deterministic and Random Signal: Types of random variables, cumulative distribution function and probability density functions, Standard distributions: Gaussian, exponential, Rayleigh, uniform, Bernoulli, binominal, Poisson, discrete uniform and conditional distributions. Functions of one random variable: distribution, mean, variance, moments and characteristics functions.

Pandom Processes: Random processes: stationery processes, mean and covariance functions, periodicity, linear filtering of random

Random Processes: Random processes, stationary processes, mean and covariance functions, periodicity, linear filtering of random processes, power spectral density, examples of random processes: white noise process and white noise sequence, Gaussian process, Poisson process, Markov process.

20

Module 2: Digital communication and modulation basics 8

Band pass and Low pass signal, Introduction to Digital communication systems, Pulse code modulation, differential pulse code modulation, delta modulation, adaptive delta modulation, PSD of Line Codingschemes, Pulse shaping, Scrambling, Eye diagram, Gram-Schmidt orthogonalization scheme.

Module 3: Digital Modulation Techniques 8 20

Modulation and Demodulation of Digital modulation schemes-ASK, FSK, PSK, DPSK, QPSK and Constellation diagram. Introduction to M-ary communication.

Module 4: Digital Communication Through Band LimitedChannels and Digital Receiver	8	20	
Characteristic and signal Design of band Limited Channels. Optimum Receiver for Channel	with ISI and	d AWGN. Linear	

Characteristic and signal Design of band Limited Channels. Optimum Receiver for Channel with ISI and AWGN. Linear Equalization, Decision Equalization, Adaptive Equalization. Introduction of Multichannel and Multicarrier System. Optimum threshold detection, Concept of Matched Filters, BER analysis of BASK, BFSK, BPSK, Modelof Spread Spectrum Digital Communication. Direct Sequence Spread Spectrum Signal (DS-SS), Frequency Hopped Spread Spectrum Signal (FH-SS).

Module 5: Information theory and Coding

Discrete Source models – Memoryless and Stationary, Mutual Information, Self-Information, Conditional Information, Average Mutual Information, Entropy, Entropy of the block, Conditional Entropy, Information Measures for Analog Sources. Review of probability theory Entropy Mutual information Data compression Huffman coding Asymptotic equipartition property Universal source coding Channel capacity Differential entropy Block codes and Convolutional codes.

Reference l	Books	
	1	John G. Proakis & Masoud Salehi, "Digital Communications", 5th Edition, McGraw Hill
	2	B.P. Lathi, "Modern Digital and Analog Communication Systems", 4th Edition,Oxford University Pres
	3	H. Taub, D L Schilling, Gautam Saha, "Principles of Communication", 4th Edition, McGraw Hill
	4	Singh & Sapre, Analog & Digital Communication Systems, 3th Edition, McGraw Hill
	5	John G. Proakis,"Communication Systems Engineering 2nd Edition, Pearson Education, 2015
	6	(Schaum's Outline Series) H P HSU & D Mitra, "Analog and Digital Communications", McGraw Hill 3rd Edition
	7	Bernard Sklar, Digital Communications, Pearson Education
	8	Simon Haykin, "Communication Systems", 5th Edition, Wiley India
list of Expe	eriments	
	1	Design and Generation of random binary signals
	2	Study of impairments of signals generated in experiment 1 on passing through a simulated channel by observing Eye Pattern.
	3	Generation Unipolar NRZ, Polar NRZ, Unipolar RZ and Polar RZ line codes.
	4	Generation Manchester and AMI line codes
	5	Conversion of analogue signal into PCM format and its study
	6	Design and implementation of Delta Modulator for analogue signals
	7	Design, implementation and study of BASK Modulator and demodulator
	8	.Design, implementation and study of BPSK Modulator and demodulator
	9	Design, implementation and study of BFSK Modulator and demodulator
	10	Design, implementation and study of multiplexer and de-multiplexer of digital signals using TDM.
	11	study of spread spectrum signal

Course Title:	Embedded system and IOT	Sub code:				
		Structure:	L	T	P	С
		'	2	1	2	4
Course Objective:	Leanring the Discipline of Embedde System Development	ed Systems and IoT and Its	Application to	Real-	Time E	mbedde
	 Learning Basic Embedded Micro Applications. Understanding the Principles of Ana 	_		nd Th	eir Ap _l	propriat
	Applying IoT Applications to Const	•	•	<i>7</i> .		
Course Outcome:	Understand the principles and designate the principles are principles and designate the principles and designate the principles and designate the principles are principles and designate the principles and designate the principles are principles are principles are principles are principles are principles and designate the principles are princi	n methodologies of embed	ded systems a	nd IoT	devices	S.
	 Analyze and implement real-time interfacing for embedded systems. 	e operating systems, cor	nmunication	protoco	ols, and	d senso
	 Gain proficiency in designing and of IoT devices. 	developing embedded soft	ware for con	rolling	and mo	onitorin
	 Explore the integration of IoT techealthcare, agriculture, and smart circulture. 		cations in va	rious d	omains	such a
	 Develop practical skills in hardware embedded systems and IoT solution 	• •	stem integrati	on, and	l deploy	ment o
Content		No	o. of hours	ESI	E Mark	s(%)
Module 1: Introducti	on to Processor Architecture		8		20	
	Design And Application Instruction Set And	1 Thumb Instruction	8		20	
Set Robotics – Designing re	obotics applications using ARM cortex-M in N	MSP 432 Robotics kit GPU	Processing			
	ocessing Instructions, Addressing Modes, Bra		_	uctions	, Condi	tional
	Register Usage, Other Branch Instructions, Da	ata Processing Instructions	, Single-Regi	ster and	l Multi	Registe
	, Stack, Software Interrupt Instructions.		8		20	
Module 3: Communi	cation and Networking in IoT		8		20	
IoT Technology Funda of 5G Cellular Netwo IoT: channel models,	ation Networks, Challenges in Networking of amentals, Medium Access Control (MAC) Prorks and 5G IoT Communications, Low-Power power budgets, data rates. Networking and ed and requirements for IoT	otocols for M2M Commun er Wide Area networks (L	ications Stand PWAN)Wire	lards fo	or the Io	T Basic ation fo
Module 4: IoT Protoc	cols		8		20	
•	ge protocols –Zigbee –BLE – 6LoWPAN. on Design and development of an IoT product		nart home, ci	ty,agrio	culture 6	etc, - Io
Module 5: Modern N			8		20	
models, Business condarchitecture IoT Data a	roduction to the Cloud Computing, History of terns in the cloud, Hypervisors, Comparison of analytics and Security: OLAP and OLTP, NoS Store, Run: Length and Bit vector Encoding,	of Cloud providers, Cloud a QL databases, Row and co	and Fog Ecos lumn Oriente	ystem f d datab	or IoT I ases, Int	Review troducti

Lyla B. Das, The x86 Microprocessors: 8086 to Pentium,, Multicores, Atom , and the

Text/Reference Books:

	8051 Microcontroller: Architecture ,Programming and Interfacing, Second Edition, Pearson Education, India 2014				
2	Lyla B. Das, Architecture, Programming, and Interfacing of Low-power Processors – ARM7, Cortex-M, Cengage, 2017				
3	Jan Holler, VlasiosTsiatsis, Catherine Mulligan, Stefan Avesand, Stamatis Karnouskos, David Boyle, From Machine-to-Machine to the Internet of Things: Introduction to a New Age of Intelligence, 1 st Edition, Academic Press, 2014.				
4	ArshdeepBagha, Vijay Madisetti , Internet of Things ,A hands on approach,2015				
5	Daniel P. Bovet, Marco Cesati, Understanding the Linux Kernel, 3rd Edition, O'Reilly,2005				

List of Experiments

- 1. Display Hello WORD message using UART
- 2. Using mobile hotspot network communicate server and Client
- 3. Display Temperature Sensor reading on Putty using UART
- 4. Interface Receiver and transmitter to send data
- 5. Interface LMT86 with ADC to get readings on the UART
- 6. Blink LED using suitable pattern
- 7. Display light intensity on the UART

Course title:	Electronic Product Design Using EDA tools	Sub code:						
		Structure	L	Т	olve pra	С		
		I	2	1	2	4		
Course Objective:	Develop proficiency in utilizing EDA synthesis, and layout design.	tools for schem	atic cap	ture,	simu	lation		
	Enhance design skills to optimize electron manufacturability through practical EDA		rformand	ce, rel	iabilit	y, and		
Course Outcome:	 Ability to independently carry out research /inverproblems Ability to write and present a substantial technic 		pmentwo	rk to s	olve pr	ractica		
	• Demonstrate a degree of mastery over the area as per the specialization of the program. The mastery should be at a level higher than the requirements in the appropriate bachelor program							
	 Inculcate the ability to understand clearly the steps in designing electronic systems which are in tune with current technology and adaptable for future changes 							
	 Create an environment such that graduates develop a passion for hardware and software design and be part of the electronic design industry to become leaders in indigenous product development 							
Content		No. of	ESE N	Iarks	(%)			
		hours						

Overview of EDA tools for electronic product design, Introduction to popular EDA software suites (e.g., Cadence, Synopsys, Mentor Graphics), Basic concepts of schematic capture, simulation, synthesis, and layout design.

Module 2: Schematic Design and Simulation

Schematic capture techniques using EDA tools, Component selection, placement, and connectivity considerations, Introduction to simulation methodologies (e.g., transient, DC, AC, and transient analysis), Verifying circuit functionality, performance, and signal integrity through simulation.

8

20

20

20

20

Module 3: Synthesis and Optimization

Principles of logic synthesis and optimization, Utilizing EDA tools for RTL (Register Transfer Level) synthesis, Optimization techniques for area, power, and timing constraints, Timing analysis and constraints setup for synchronous digital designs.

Module 4: Layout Design and Physical Verification

Introduction to layout design principles and methodologies, Floor planning, placement, and routing techniques using EDA tools, Understanding Design Rule Checks (DRC) and Layout vs. Schematic (LVS) verification, Physical verification techniques to ensure design manufacturability and reliability.

Module 5: Advanced Topics and Project Work

Advanced concepts such as analog/mixed-signal design, power analysis, and formal verification, Integration of EDA tools into a complete electronic product design flow, Hands-on project work involving the design, simulation, synthesis, layout, and verification of a complex electronic product using EDA tools, Presentation and documentation of project outcomes.

Reference Books:

- 1. "EDA for IC Implementation, Circuit Design, and Process Technology" by Luciano Lavagno, Igor L. Markov, and Louis K. Scheffer
- 2. "Digital Integrated Circuits: A Design Perspective" by Jan M. Rabaey, Anantha Chandrakasan, and Borivoje Nikolić
- 3. "Introduction to VLSI Circuits and Systems" by John P. Uyemura
- 4. "SystemVerilog for Design" by Stuart Sutherland, Simon Davidmann, and Peter Flake
- 5. "ASIC Design in the Silicon Sandbox: A Complete Guide to Building Mixed-Signal Integrated Circuits" by Keith Barr

List of Experiments:

1. Schematic Design Exercise:

• Create a schematic diagram for a simple digital circuit using EDA software, ensuring proper component selection and connectivity.

2. Simulation Analysis:

• Conduct transient analysis on the designed circuit to verify its functionality and transient response using EDA simulation tools.

3. Logic Synthesis and Optimization Task:

• Perform RTL synthesis and optimization for a given digital design, optimizing for area, power, and timing constraints.

4. Timing Constraints Setup:

• Set up timing constraints and perform timing analysis for synchronous digital designs to ensure proper operation within specified timing requirements.

5. Layout Design Challenge:

Design the layout for the synthesized digital circuit, considering floor planning, placement, and routing techniques to optimize layout area and signal integrity.

6. Design Rule Checks (DRC) Evaluation:

• Conduct DRC checks on the layout design to identify and rectify violations, ensuring compliance with manufacturing rules and constraints.

7. Layout vs. Schematic (LVS) Verification Task:

• Perform LVS verification to ensure consistency and accuracy between the schematic and layout designs, resolving any mismatches or discrepancies.

8. Physical Verification Assignment:

• Perform physical verification tasks including DRC, LVS, and other checks to ensure design manufacturability and reliability.

9. Advanced Design Exploration Project:

• Explore advanced design concepts such as analog/mixed-signal design or power analysis, implementing a small-scale project using EDA tools.

10. Comprehensive Project Presentation:

11. Present and document a comprehensive project involving the entire electronic product design flow, demonstrating proficiency in using EDA tools for design, simulation, synthesis, layout, and verification.

Course title:	Dissertation Phase-II	Sub code:	8P43	8P43				
		Structure:	L	T	P	С		
		-	0	0	40	20		
Course Objective:	Final Year Projects represent the culmination of study towards the Bachelor of Engineering degree. Projects offer the opportunity to apply and extend material learned throughout the program. Assessment is by means of a seminarpresentation, submission of a thesis, and a public demonstration of work undertaken. The projects undertaken span a diverse range of topics, including theoretical, simulation and experimental studies. The emphasis is necessarily on facilitating student learning in technical, project management and presentation spheres.							
Course outcome:	 Apply knowledge and skills acquired throughout the program to solve real-world engineering problems. 							
		out names on experience in designing, implementing, and testing innovative engineering solu						
	 Enhance communication and presentation skills throutcomes. 	Emailee communication and presentation skins through the documentation and presentation of project						
	• Prepare for transition into the workforce or further academic pursuits by demonstrating competency in a specialized area of electronics engineering.							
Content		No. of hours	ESE Ma	arks	(%)			

Module 1: Term Work

Dissertation Phase-II, is in continuation of Project Part-I undertaken by the candidates in first term. The term workshall consist of a typed report of about 70 pages or more, on the work carried out by the batch of students inrespect of the project assigned, during first term and second term. It should be in the proper format.

Module 2: Practical Examination:

It shall consist of demonstration of designed, fabricated project and oral based on it. The said examination will be conducted by a panel of two examiners; one of them will be a guide and another will be an external examiner. The external examiner will be either from the allied industry or a senior faculty member from another institute.

Annexure-I **List of Professional Electives**

Sl	Elective	Course Name	Credit
No.			
1	Professional Elective I	1. Energy and Environment Engineering	3
	(PE201A/PE201B)	2. Smart Grids and Energy Management	
2	Professional Elective II	1. C/C++ Programming	3
	(PE401A/PE401B)	2. Data Structure and Algorithm	
3	Professional Elective III	Management Principles and Practices	3
	(PE402A/PE402B)	2. Employability skill	
4	Professional Elective IV	1. Transmission Lines and PCB Technology	4
	(PE601A/PE601B)	2. SOC Design and Verification	
5	Professional Elective V	Artificial Intelligence and Machine Learning	3
	(PE602A/PE602B)	2. Database Management System	

Course title:	ENERGY AND ENVIRONMENTAL ENGINEERING	Sub code							
		Structure	L	T	P	С			
		I	2	1	0	3			
Course Objective:	To provide students with a fundament environmental impact, fostering award	_							
	engineering solutions to mitigate envi	• To analyze environmental challenges arising from energy utilization and explore engineering solutions to mitigate environmental impacts, promoting a holistic approach to energy and environmental management.							
Course Outcome:	 Principal renewable energy systems Explore the environmental impact of types of pollutants. 	• Explore the environmental impact of various energy sources and also theeffects of different							
	• An understanding the problems of ene	• An understanding the problems of energy distribution, design, plan and execute							
	 To make a thought in terms of scientification sustainable energy greenhouse 	 To make a thought in terms of scientific and technological advancement in the spirit of a sustainable energy greenhouse 							
	_	 Understand the relationships between natural resources, consumption, population, economics of consumerism, etc in an environmental context 							

Content

Module 1: Introduction:

Present Energy resources in India and its sustainability - Different type of conventional Power Plant-

-Energy Demand Scenario in India-Advantage and Disadvantage of conventional Power Plants -Conventional Vs Nonconventional power generation.

Module 2: Basics of Solar Energy:

Basics of Solar Energy- Solar Thermal Energy- Solar Photovoltaic- Advantages and Disadvantages-Environmental impacts and safety.

Module 3: Wind, Biomass, Geothermal conversions and resources:

Power and energy from wind turbines- India's wind energy potential- Types of wind turbines- Offshore Wind energy-Environmental benefits and impacts.

Biomass resources-Biomass conversion Technologies- Feedstock pre-processing and treatmentmethods- Bioenergy program in India-Environmental benefits and impacts.

Geothermal Energy resources –Ocean Thermal Energy Conversion – Tidal.

Module 4: Air Pollution and Greenhouse gases :

Air pollution- Sources, effects, control, air quality standards, air pollution act, air pollution measurement. Water pollution-Sources and impacts, Soil Pollution-Sources and impacts, disposal of solid waste.

Greenhouse gas effect, acid rain. Noise pollution. Pollution aspects of various power plants. Fossilfuels and impacts, Industrial and transport emissions- impacts.

Module 5: Social Issues related to Environment:

From Unsustainable to Sustainable development, Urban problems related to energy, Water conservation, rain water harvesting, watershed management, Resettlement and rehabilitation of people; its problems and concerns. Climate change, global warming, acid rain, ozone layer depletion and Eutrophication, Wasteland reclamation. Consumerism and waste products. Environment Protection Act. Air (Prevention and Control of Pollution) Act. Water (Prevention and control of Pollution) Act, Wildlife Protection Act, Forest Conservation Act.

Reference Books:

- 1) Boyle, G. 2004. Renewable energy: Power for a sustainable future, Oxford University press.
- 2) B H Khan, Non-Conventional Energy Resources-The McGraw -Hill Second edition.
- 3) G. D. Rai, Non-conventional energy sources, Khanna Publishers, New Delhi, 2006.
- 4) Gilbert M. Masters, Introduction to Environmental Engineering and Science, 2nd Edition, Prentice Hall, 2003.

Course title:	Smart Grids and Energy Management	Sub code:	PE2	PE201B					
		Structure	L	T	P	C			
		1	2	1	0	3			
Course Objective:	 modern energy management systems. To develop an understanding of demand conservation and load balancing. To explore the integration of Internet of monitoring, control, and automation. 	To develop an understanding of demand-side management and its role in energy conservation and load balancing. To explore the integration of Internet of Things (IoT) in energy management for							
	 assessing and optimizing energy use. To analyze data analytics and machimanagement and predictive maintenance 		es in op	otimiz	zing e	energy			
Course Outcome: Explain the architecture, components, and functioning of smart grids and significance in modern power systems. Apply demand-side management strategies to optimize energy consumptimprove grid reliability. Implement IoT-based solutions for energy monitoring, control, and autor grid applications. Perform energy audits and assessments, understanding various energy permetrics and their relevance. Utilize data analytics and machine learning tools to enhance energy efficiency, and support decision-making in energy management.		nption toma perfo	n and tion in	ce					

Content

Module 1: Introduction to Smart Grids and Energy Management

- Evolution of traditional grids to smart grids, features, benefits, and architecture of smart grids.
- Key components of smart grids: Advanced Metering Infrastructure (AMI), Phasor Measurement Units (PMUs), and communication networks.
- Role of smart grids in integrating renewable energy sources and managing distributed generation.
- Cybersecurity challenges in smart grids and potential solutions.

Module 2: Demand-Side Management and Energy Efficiency

- Concept and importance of demand-side management (DSM), demand response (DR), and load forecasting.
- Energy conservation techniques and energy efficiency measures.
- Techniques for load shifting, peak shaving, and balancing energy supply and demand.

• Economic incentives for DSM and DR programs, and their impact on consumers and utilities.

Module 3: IoT in Smart Grids and Energy Management

- Overview of IoT architecture and protocols for smart grids.
- IoT-enabled devices and sensors for real-time monitoring, data collection, and remote control of energy systems.
- Smart meters, smart appliances, and home energy management systems (HEMS).
- Communication technologies in IoT-enabled smart grids: Zigbee, LoRa, NB-IoT, and 5G.

Module 4: Energy Auditing and Standards

- Basics of energy auditing: types of audits, objectives, and methodologies.
- Key energy performance indicators (KPIs), energy consumption analysis, and benchmarking.
- Standards and protocols in energy auditing (ISO 50001, ASHRAE standards).
- Role of energy audits in industry, buildings, and residential applications, case studies of successful energy audits.

Module 5: Data Analytics and Machine Learning in Energy Management

- Introduction to data analytics and machine learning techniques in energy management.
- Applications of machine learning for load forecasting, anomaly detection, and predictive maintenance.
- Case studies on using analytics for energy optimization and fault detection in smart grids.
- Overview of tools and platforms (MATLAB, Python, R) for energy data analysis and visualization.

Reference Books:

- 1. **James Momoh**, Smart Grid: Fundamentals of Design and Analysis, IEEE Press, Wiley.
- 2. **Gil Masters**, *Renewable and Efficient Electric Power Systems*, 2nd Edition, Wiley.
- 3. Janaka Ekanayake, Nick Jenkins, Kithsiri Liyanage, Jianzhong Wu, Akihiko Yokoyama, Smart Grid: Technology and Applications, Wiley.
- 4. Fereidoon P. Sioshansi, Smart Grid: Integrating Renewable, Distributed & Efficient Energy, Academic Press.
- 5. **Ali Keyhani**, Design of Smart Power Grid Renewable Energy Systems, Wiley-IEEE Press.

Course title:	C/C++ PROGRAMMING	Sub code							
		Structure	L	T	P	C			
			2	0	2	3			
Course Objective:	To introduce basics of programmiTo help students understand how		•			nd			
	develop practical programming sk • To implement mathematical statis	ills of students.							
Course Outcome:	-	Master the syntax, semantics, and basic programming constructs of the C/C++							
	 Develop problem-solving skills the exercises. 	 Develop problem-solving skills through algorithmic thinking and programming exercises. 							
	 Understand memory management programming. 	 Understand memory management, pointers, and data structures for efficient programming. 							
	• Gain proficiency in modular programming, debugging, and testing techniques.								
	Apply object-oriented programmic solutions for engineering problem	• • •	mplemen	t softv	ware				
Content		No. of hours	ESE	Marl	xs(%)				
Module 1: Introduction	on:	8	20						

Flow charts, data types and storage classes, scope of variables, arithmetic operators, assignment, conditional, arithmetic expressions, enumerated data types, decision making, branching, looping, Switch concept, function and parameter passing, recursive functions, macros.

Module 2: Basic programming algorithms:

8

20

Programs to illustrate basic language constructs in C like - Factorial, Sine/cosine and other mathematical series, Fibonacci series, calculating square-root of a number, calculating GCD of 2 integers (Euclid's method and otherwise), Calculating LCM of 2 integers and similar such programs.

Module 3: Arrays and applications in C language:

8

20

Introduction to one dimensional and 2-D array with examples. Representing a polynomial using 1-D array and polynomial operations, use of 2-D array to represent a matrix and matrix operations. Character arrays (strings): String related functions (strlen, strcpy, strcat, strcmp, atoi, itoa, reverse, strstr etc) and their function definitions. Searching and Sorting methods: Selection sort, Bubble sort, Insertion sort, Linear and binary search, partitioning an array, merging of 2 sorted arrays. Introduction to "Divide and Conquer" via Mergesort and Quicksort.

Module 4: Structures, Unions and Pointers in C language:

8

20

Basic concept, array of structures and its applications. Introduction (declaration and initialization), pointers and arrays, concept of dynamic memory allocation, use of pointers to represent variable- sized 1-D and 2-D arrays, pointers to structures.

Module 5: C++ programming concepts

8

20

Introduction to Object Oriented Concepts, Features of Object-oriented programming (OOP). Classes and Objects: Creating a Class, The Self Variable, Constructor, Types of Variables, Namespaces, Types of Methods, Encapsulation, Module Packages. Inheritance and Polymorphism: Constructors in Inheritance, The Super Function, Types of Inheritance, Polymorphism, Abstract classes and Interfaces.

Reference Books:

- 1) Kerninghan; Ritchie, "C programming Language", PHI
- 2) Theraja B.L., Electrical Technology, S. Chand Publishers
- 3) Balguruswamy, "Programming in ANSI C", Tata Mcgraw Hill Publishing
- 4) Kakde and Deshpande, "C and data Structure", Charles River Media Publisher
- 5) Dromey R G, "How to Solve it by Computer", PHI
- 6) "Programming in C++ (A Practical Approach)", C. S. Sharma Publisher, Oxford University Press

List of Experiments:

- 1) Write a Program to calculate and display the volume of a CUBE having its height (h=10cm), width (w=12cm) and depth (8cm).
- 2) Write a program to take input of name, roll no and marks obtained by a student in 5 subjectseach have its 100 full marks and display the name, roll no with percentage score secured.
- 3) Simple Arithmetic Operation.
- 4) Write a C program to check whether a number is even or odd using ternary operator.
- 5) Write a C program to find the sum of individual digits of a positive integer.
- 6) Write a C program to print the numbers in triangular form.
- 7) Write a C program to find the second largest integer in a list of integers.
- 8) Write C programs that use both recursive and non-recursive functions.
- 9) Write a C program to perform arithmetic using Switch Statement.
- 10) Write a C program to perform factorial.
- 11) Write a C program to print Fibonacci no.
- 12) Write a Simple Calculator Program using C++
- 13) Write a student database management Program using C++

Course title:	Data Structure and Algorithms	Sub code:				
	ı	Structure:	L	T	P	С
			2	0	2	3
Course Objective:	 Master fundamental data structures a Develop critical thinking and proble of algorithms. Understand the principles behind var scenarios. Enhance coding proficiency by pract 	m-solving skills through the an	alysis ai	nd impons in	pleme real-	entation
Course Outcome: Apply various data structures and algorithms to efficiently solve co Analyze the time and space complexity of algorithms to make infor Design and implement algorithms for sorting, searching, and manip Utilize data structures such as arrays, linked lists, trees, and graphs world problems.		med des	sign cl data e	hoice ffecti	s. vely.	

Content

Module 1: Introduction and basic terminology

Notion of data structures and algorithms, *llllllll*, nn, 2nn: understanding growth of these functions, and applications (binary search and extensions to similar problems), Worst-case, averagecase time/space complexity and their relative merits, Asymptotic Notation: $OO(),\Omega\Omega()$

Module 2: Abstract Data-types, Arrays, Linked Lists, Stacks, Queues Dictionary ADT, Trees, Binary Trees

Abstract data-type (ADTs): arrays and linked list ADTs, Stacks, Queues: ADTs and implementations using arrays, linked lists, Doubly linked lists: ADT and implementation, Dictionary ADT: implementation using array, linked lists, binary search, Tree ADT and examples, Implementation of trees and basic traversal algorithms, Binary trees and in order traversal

Module 3: Priority Queues and Heaps

Priority Queue ADT, Definition of heaps, Implementation of Priority Queues using heaps and running time analysis, Implementation of heaps using arrays, Heap-sort

Module 4: Binary Search Trees, AVL Trees, 2-4 trees

Binary Search Trees: definition and some basic algorithms, Implementation of Dictionary ADTs using Binary Search trees and running time analysis, AVL trees: height balance condition, rotations, and implementation of dictionary ADT, 2-4 Trees: Multiway search trees, implementation of dictionary ADT, Informal discussion of extension to B-trees.

Module 5: Hash tables, tries

Map ADT, Hash Tables and implementation of Map using Hash Tables, Design of hash functions, Collision resolution schemes: chaining, open addressing schemes like linear probing, quadratic probing, double hashing, Applications of Hashing: finding duplicates, set intersection, etc., Tries: implementation of Map ADT using tries, Compressed tries and suffix tries.

Reference Books

1	"Data Structures and Algorithms in Java", by Michael T. Goodrich and Roberto Tamassia, John Wiley &
	Sons; 3rd Edition.
2	"Data Structures and Algorithms in Python", by Michael T. Goodrich and Robert, Tamassia, Wiley, 1st
	Edition.
3	In case any other programming language is used for this course, some other suitable text book may be
	chosen.
4	NPTEL video series, Data-structures and Algorithms, Instructor: Naveen Garg
5	Introduction to Algorithms, 4th Edition, Thomas H Cormen, Charles E Lieserson, Ronald L Rivest and
	Clifford Stein, MIT Press/McGraw-Hill.

Experiment List

- 1. Measure the time complexity of linear search versus binary search on arrays of varying sizes to understand their growth patterns.
- 2. Implement a stack using arrays and compare its performance with a linked list-based implementation.
- 3. Explore the efficiency of different collision resolution schemes (chaining, linear probing, quadratic probing) in hash tables.
- 4. Construct a priority queue using a heap and analyze its time complexity during various operations.
- 5. Implement a binary search tree and measure its efficiency in comparison to other dictionary ADTs.
- 6. Study the balance conditions in AVL trees by implementing insertion and deletion operations and analyzing their effects on the tree's height.
- 7. Compare the efficiency of different traversal algorithms (in-order, pre-order, post-order) on binary trees.
- 8. Experiment with various hash functions and observe their impact on hash table performance.
- 9. Implement a trie data structure and explore its efficiency in storing and retrieving data compared to hash tables.
- 10. Construct a 2-4 tree and analyze its space and time complexity for dictionary operations.

Course title:	Manage	ement Principles and Practices	Sub code:	PE	402A		
			Structure:	L	Т	P	С
				2	1	0	3
Course Objective:	•	Understand the fundamental prindriven organizations.	ciples and function	s of man	ageme	nt in t	he context of technology-
	•	Develop skills in planning, decision the tech industry.	ion-making, organi	zing, lead	ding, c	ontrol	ling, and monitoring within
	•	Analyze and apply management computer science engineering.	theories and practic	ces to add	lress c	hallen	ges specific to the field of
	•	Explore the role of human resour teams.	ce management in	nurturing	talen	t and f	ostering innovation in tech
Course Outcome:	•	Demonstrate proficiency in apply technology-driven environments.		rinciples	to sol	ve real	l-world problems in
	•	 Develop effective planning, decision-making, and organizational skills relevant to computer science engineering projects. 					
	•	Exhibit leadership qualities and to organizational goals.	he ability to motiva	ate and er	igage 1	tech te	eams towards achieving
	•	Implement quality management a projects.	and project manage	ment me	thodol	ogies	to ensure the success of tech
	•	Apply human resource managem productive and collaborative wor	•				talent, fostering a

Content

Module 1: Introduction to Management

Overview of management principles and functions. Evolution of management theories. Managerial roles and responsibilities. Importance of management in organizations. Case studies on successful management practices

Module 2: Planning and Decision Making

Understanding the planning process: setting goals, objectives, and strategies. Types of plans: strategic, tactical, operational. Decision-making models and techniques. Risk management and contingency planning. Case studies on effective planning and decision-making in tech companies

Module 3: Organizing and Leading

Principles of organizational structure and design. Delegation of authority and responsibility. Leadership styles and theories. Motivation and employee engagement strategies. Case studies on leadership and organizational effectiveness in tech teams.

Module 4: Controlling and Monitoring

Techniques for performance measurement and control. Quality management principles and practices. Project management methodologies (e.g., Agile, Waterfall). Monitoring and evaluating project progress. Case studies on successful project management and quality control in tech projects

Module 5: Human Resource Management

Recruitment and selection processes for tech roles. Training and development programs for tech professionals. Performance appraisal systems and feedback mechanisms. Employee relations and conflict resolution strategies. Case studies on HRM practices in tech companies.

Reference Books

- 1. "Management: Principles and Practices for Engineering and Construction" by Alan C. Twort and J. Gordon Rees
- 2. "Introduction to Management Science" by Bernard W. Taylor III
- 3. "Management Information Systems: Managing the Digital Firm" by Kenneth C. Laudon and Jane P. Laudon
- 4. "Human Resource Management" by Gary Dessler
- 5. "Project Management for Engineering, Business, and Technology" by John M. Nicholas and Herman Steyn

Course title:	Employability skill	Sub code: PE402B			PE402B					
		Structure:	L	Т	P	С				
		I	2	1	0	3				
Course Objective:					g skills required in the sumes, and business fective collaboration in a					
Course Outcome:	 Exhibit enhanced probled different scenarios. Write clear and concise standard formats. Collaborate effectively project work. 	verbal and written comm lem-solving abilities and e technical reports, resum in teams, demonstrating interviews and perform	the capanes, and leaders	ability profea	to the ssion:	ink critically under all emails, adhering to naging time efficiently in				

Content

Module 1: Communication Skills and Professional Writing

- **Verbal Communication**: Importance of clear and concise communication, effective listening, and presentation skills.
- Written Communication: Email etiquette, technical report writing, formal letters, and memos.
- **Resume Building**: Structure of a professional resume, creating an impactful resume that highlights skills and achievements.
- Cover Letters: Writing personalized cover letters to accompany job applications.
- **Business Communication**: Effective use of communication in meetings, conferences, and business correspondence.

Module 2: Critical Thinking, Problem-Solving, and Decision Making

- **Critical Thinking**: Analyzing information objectively, logical reasoning, and evaluating arguments.
- **Problem-Solving**: Techniques for solving complex problems, identifying root causes, and finding solutions.
- **Decision-Making Models**: Understanding various decision-making models like SWOT analysis and cost-benefit analysis.
- Creativity in Problem Solving: Techniques for fostering creativity and innovation in finding solutions.
- Case Studies: Analyzing real-life industry problems and providing solutions using critical thinking.

Module 3: Teamwork, Leadership, and Collaboration

- **Teamwork Skills**: Importance of teamwork, roles within a team, and conflict resolution techniques.
- **Leadership Styles**: Different leadership styles (e.g., transformational, transactional, and situational leadership) and their applications.
- Effective Collaboration: Techniques for improving collaboration in a diverse work environment.
- **Project Management**: Basics of project management, resource allocation, scheduling, and tracking progress.
- **Group Dynamics**: Understanding group roles, managing group conflict, and enhancing group performance.

Module 4: Time Management and Organizational Skills

- **Time Management**: Techniques like the Pomodoro technique, Eisenhower Matrix, and setting SMART goals.
- **Prioritization**: How to prioritize tasks based on urgency and importance.
- Stress Management: Techniques for managing stress and maintaining productivity during peak workloads.
- Work-Life Balance: Strategies for achieving a balance between professional responsibilities and personal life.
- **Organizational Skills**: Managing resources, organizing workspaces, and using tools for scheduling and tracking progress.

Module 5: Interview Preparation, Group Discussions, and Public Speaking

- **Interview Techniques**: Preparation for technical, HR, and behavioral interviews. Mock interviews and interview etiquette.
- **Group Discussions**: Approaches to participating effectively in group discussions, including listening skills, argument presentation, and summarizing.
- **Public Speaking**: Overcoming stage fear, techniques for effective public speaking, and making impactful presentations.
- Communication in Interviews: Handling difficult questions, body language, and personal branding.
- **Personality Development**: Confidence-building, self-awareness, and maintaining a positive attitude in professional settings.

Reference Books

- 1. **Meenakshi Raman and Sangeeta Sharma**, *Technical Communication: Principles and Practice*, 3rd Edition, Oxford University Press.
- 2. P. K. Sinha, Employability Skills for Engineers, Cengage Learning.
- 3. **Rajendra Pal and J.S. Korlahalli**, *Essentials of Business Communication*, 8th Edition, Sultan Chand & Sons.
- 4. **K. K. Sinha**, Soft Skills: Know Yourself and Know the World, 2nd Edition, Cengage Learning.
- 5. **Stephen P. Robbins**, *Organizational Behavior*, 12th Edition, Pearson Education.

Course Title:	Transmission Lines and PCB Technology	Sub code:				
		Structure:	L	Т	P	C
		l	2	0	4	4

Course Objective:	Learning PCB Fundamentals, Types, and Classifications.
	Learning the design rules for Analog, digital and mixed signal electronic circuits.
	Learning about Transient, AC Sweep, DC Sweep and operation point simulation for various electronic circuits.
	 Learning about PCB design and manufacturing process flow for SSB (Single sides boards) & DSB(Double sided Boards).
Course Outcome:	Able to do analysis of various electronic circuits.
	 Design the Schematics and PCB layout for SSB(Single sides boards) &DSB(Double sided boards).
	Perform Artwork generation using Film master equipment.
	Generate various PCB Manufacturing files and drill files required for PCBfabrication.

Content	No. of hours	ESE Marks(%)
Module 1: Transmission Lines	8	20

Introduction to Transmission Lines: Definition and importance of transmission lines, Classification of transmission lines (open-wire, coaxial, microstrip, etc.), Parameters of transmission lines: resistance, inductance, capacitance, and conductance. Basics of Transmission Line Equations: Derivation of Telegrapher's equations. Characteristics of transmission lines: velocity of propagation, characteristic impedance, attenuation constant, and phase constant. RC Transmission Lines: Analysis of RC transmission lines, Determination of characteristic impedance and propagation constant for RC lines, Reflection and transmission coefficients for RC lines. RCC Transmission Lines: Introduction to RCC transmission lines, Analysis of RCC transmission lines considering resistive, capacitive, and conductive effects, Calculation of characteristic impedance and propagation constant for RCC lines. Infinite Transmission Lines and Control Impedance: Infinite transmission lines: reflectionless lines, matched lines, and quarter-wavelength lines, Design considerations for control impedance, Applications and examples of transmission line designs, Problem-solving sessions and review of key concepts.

Module 2: Introduction to PCB Design, tools and techniques

30

Overview of PCB technology and its applications. Introduction to PCB design software (e.g., Cadence Allegro / Orcad / Altium Designer) ,Understanding PCB design considerations: size, shape, layers, and component placement ,Basics of schematic capture and PCB layout design ,Design rules and constraints for signal integrity, power distribution, and thermal management, In-depth exploration of PCB design software features and tools,Practical exercises in schematic design and PCB layout using industry-standard software ,Advanced techniques for component placement, routing, and copper pour ,Designing for manufacturability (DFM) and assembly (DFA) ,Introduction to Design for Testability (DFT) principles.

Module 3: PCB Manufacturing process

8

20

Overview of PCB manufacturing processes: substrate selection, imaging, etching, and drilling Understanding PCB fabrication technologies: subtractive, additive, and semi-additive processes, Quality control and inspection techniques during manufacturing, Environmental considerations in PCB manufacturing, Case studies and real-world examples of PCB manufacturing challenges and solutions

Module 4: PCB assembly techniques.

6

20

Introduction to surface-mount technology (SMT) and through-hole technology (THT), Component selection, procurement, and inventory management Soldering techniques: hand soldering, reflow soldering, wave soldering PCB assembly equipment and machinery: pick-and-place machines, solder paste printers, reflow ovens, Testing and inspection methods during PCB assembly: visual inspection, automated optical inspection (AOI), in-circuit testing (ICT)

Module 5: PCB testing and quality assurance

6

10

Introduction to PCB testing methodologies: functional testing, boundary scan testing, flying probe testing Designing and implementing test fixtures and procedures Reliability testing and failure analysis techniques Quality assurance standards and certifications for PCBs Continuous improvement strategies in PCB testing and quality management

Text/Reference Books:

	1	Printed Circuit Boards: Design and Technology, Walter C Bosshart ,Tata McGraw-hill publication
	2	Printed Circuit Boards: Design, Fabrication, Assembly & Testing, R S Khandpur, Tata McGraw-hill publication
	3	Printed Circuit Boards, Coombs Clyde F., Tata McGraw-hill publication
	4	The Design & Drafting of Analog Printed Circuit boards, Darryl Lindsey, BishopGraphics Inc
	5	Printed Circuit Boards: Design Techniques For EMC Compliance, Montrose Mark I,IEEE Press Series of Electronics Technology
List of Experimen	its	
	1	Design the current mirror circuit in schematic editor using Autodesk Eagle softwareand Run the operating point analysis simulation.
	2	Design the basic diode circuit in schematic editor using Autodesk Eagle software andRun the Transient Analysis simulation.
	3	Design the basic MOSFET circuit in schematic editor using Autodesk Eagle software
		and Run the DC Sweep Analysis simulation.
	4	Design the BJT Oscillator circuit in schematic editor using Autodesk Eagle software and Run the Transient Analysis simulation.
	5	Create the library component resistor with the following dimensions and specifications using Autodesk Eagle software.
	6	Create the library component for 555 timer IC with the given dimensions and specifications using Autodesk EAGLE Software.
	7	Create the library component for G5LE OMRON RELAY with the given dimensions and specifications using Autodesk EAGLE Software.
	8	Create the library component for NCP716B LDO with the given dimensions and specifications Autodesk EAGLE Software.
	9	Design the USB TO TTL/CMOS Programmer circuit using FTDI232 IC into schematic editor and draw the PCB layout for the same in Autodesk EAGLE software, run the Electrical Rule Check(ERC) in schematic editor.
	10	Design the Astable Multivibrator circuit using 555 timer ic into schematic editor and draw the PCB layout for the same in Autodesk EAGLE software, generate BOM, netlist and run design rule check.
	11	Design the DC TO DC 5V Voltage regulator circuit using LM317 IC into schematic editor and draw the PCB layout for the same in Autodesk EAGLE software, generate gerber files for top electrical and bottom electrical.
	12	To learn the process of generating files(HPGL, ISEL, Excellon) for CNC drilling and milling machine.
	13	To learn the process of generating 3D files format and observe the DXF view.
	14	Study the various format settings done in photoplotter machine. Learn about artwork generation software, the concept of importing PCB Gerber file and converting files to photoplotter format.
	15	To learn the process of generating legends(silkscreen) for Top electrical/ bottom electrical (SSB) Or both (DSB).

Course title:	SoC Design and Verification	Sub code:					
		Structure:	L	Т	P	С	
			2	0	4	4	
Course Objective:	 Understand the fundamentals of System- to develop complex integrated circuits. Gain proficiency in hardware description 						
	 Learn advanced techniques for designing SoCs, including IP integration and system 		nd analog	comp	onents	within	
	 Explore industry-standard tools and mether enhancing employability in the semicond 	•	gn, verific	ation,	and te	esting,	
	 Develop practical skills through hands-or and verification of a custom SoC, prepar 			_		_	
Course Outcome:	Demonstrate proficiency in designing an architectures, adhering to industry standar		stem-on-C	Chip (S	SoC)		
	1	 Acquire hands-on experience in hardware description languages (HDLs) and industry-standard tools for SoC modeling, simulation, and synthesis. 					
		 Possess the skills to integrate and verify digital and analog components within SoCs, ensuring functional correctness and performance optimization. 					
	• Students will be capable of analyzing and resolving design challenges in SoC projects, considering factors such as power consumption, area utilization, and timing constraints.						
	 Prepare students for careers in semicondustudies in advanced topics related to SoC 	-		ions, o	or furth	ner	
Content	· •	No. of hours	ESE I	Marks	s (%)		
Module 1: Introduct	ion to SoC Design	8			20		
	n-Chip (SoC) architecture and design methodologies, In HDL, SoC design flow and the role of simulation and versions.		description	n lang	guages	(HDLs	
Module 2: Digital D	esign and Verification	8			20		
	quential logic design techniques, Finite State Maching using Verilog/VHDL for digital SoC components, Flation						
Module 3: System V	erilog And Universal Verification Methodology	8			20		
for RTL (Register Tran to UVM as a standardiz	erilog as an extension of Verilog with enhanced feature sfer Level) design of SOC components including modul zed methodology for verification in System Verilog, De lology, Developing verification plans to ensure compre	les, interfaces, and hiera signing modular and re	rchical str usable ver	ucture ification	es, Intro	oductio nponent	
	ration and Verification	8			20		
-	y) integration strategies and standards,SoC bus architected odologies including constrained random testing and as				_	•	
.0018					20		
	l Topics and Project Work	8			20		
Module 5: Advanced Advanced SoC design applications of SoC d	I Topics and Project Work a concepts such as low-power design techniques and esign and verification, Group projects involving the ssion of project outcomes	d security consideration			s and		

"Digital Design and Computer Architecture" by David Harris and Sarah Harris "SystemVerilog for Verification: A Guide to Learning the Testbench Language Features" by Chris Spear "Analog Design Essentials" by Willy M. C. Sansen4. J. P. Uyemura, CMOS Logic Circuit Design, Springer; 2001,. "Principles of CMOS VLSI Design: A Systems Perspective" by Neil H. E. Weste and David "System-on-Chip Verification: Methodology and Techniques" by Prakash Rashinkar, et al. 5. **List of Experiments:** Introduction to SoC Design: Experiment 1: FPGA Programming for Basic Logic Circuits. Digital Design and Verification: o Experiment 2: Design and Verification of Basic Logic Gates in Verilog. 3. System Verilog and Universal Verification Methodology (UVM): Experiment 3: Introduction to System Verilog Constructs. Experiment 4: Development of a UVM Testbench for SOC Verification. SoC Integration and Verification: Experiment 5: Integration and Verification of Peripherals in an SoC. Advanced Topics: Experiment 6: Design and Verification of Advanced SoC Components. Project Work: Experiment 7-10: SoC Design Project: Full SoC Development with Peripherals and Advanced Components.

Course title:	Artificial Intelligence and Machine Learning	Sub code	e:						
		Structur	re: L	T	P	С			
		<u>_</u>	2	0	2	3			
Course Objective:	This course aims to introduce students to fundament in artificial intelligence (AI), providing a comprehend methodologies.	• '			nique	ès			
	 Students will be introduced to the foundational cond learning, including supervised, unsupervised, and re to understand the principles behind machine learning 	inforcement learning	algorithms, e			m			
	 Through practical examples and case studies, studer AI algorithms in diverse fields such as science, med 			learni	ing a	nd			
Course Outcome:	Understand the principles and techniques of artificial	al intelligence and ma	chine learning	galgor	ithm	ıs.			
	 Analyze and apply supervised, unsupervised, and re engineering problems. 	inforcement learning	techniques to	solve					
	• Gain proficiency in designing and implementing machine learning models for pattern recognition, classification, and regression tasks.								
	• Explore advanced topics such as deep learning, neural networks, and natural language processing.								
	 Develop practical skills in programming, data analysis, and model evaluation using machine learning libraries and frameworks. 								
Content		No. of hours	ESE Mark	s (%)					
Module 1: Introduc	tion to Artificial Intelligence	8		20					

societal impact of AI

Module 2: Machine Learning Fundamentals

8

20

Introduction to Machine Learning (ML) and its types (supervised, unsupervised, reinforcement learning), Basic concepts: Feature representation, training, and evaluation. Supervised learning algorithms: Linear regression, logistic regression, decision traes, and

Overview of Artificial Intelligence (AI) and its applications, History and evolution of AI, Foundations of AI: Logic, reasoning, and problem-solving, AI techniques: Search algorithms, knowledge representation, and expert systems, Ethical considerations and

representation, training, and evaluation, Supervised learning algorithms: Linear regression, logistic regression, decision trees, and support vector machines, Unsupervised learning algorithms: Clustering, dimensionality reduction, and association rule learning

Model evaluation and validation techniques				
Module 3: Deep Learning and Neural Networks	8	20		
Introduction to Deep Learning and neural networks, Basics of artificial neurons an	d activation f	unctions Fundamentals of		
feedforward neural networks, Training neural networks: Backpropagation algorithm, gradient descent optimization, Deep learning				
architectures: Convolutional Neural Networks (CNNs), Recurrent Neural Networks (RNNs), and their applications				
Module 4: Advanced Topics in Machine Learning	8	20		
Ensemble learning techniques: Bagging, boosting, and stacking, Support Vector Machine (SVM) extensions: Kernel methods,				

Ensemble learning techniques: Bagging, boosting, and stacking, Support Vector Machine (SVM) extensions: Kernel methods, multi-class classification, Introduction to reinforcement learning: Markov Decision Processes (MDPs), Q-learning, and policy gradients, Introduction to natural language processing (NLP): Text preprocessing, sentiment analysis, and language modeling, Time series analysis and forecasting using machine learning techniques

Module 5: Applications of Artificial Intelligence and Machine Learning 8 20

AI applications in various domains: Healthcare, finance, robotics, autonomous vehicles, etc., Case studies and real-world examples of AI and ML implementations, Ethical considerations in AI and ML applications, Future trends and emerging technologies in AI and ML, Hands-on projects and practical applications of AI and ML concepts

Reference Books:

- 1. Stuart Russell, Peter Norvig, "Artificial Intelligence A Modern Approach", PearsonEducation
- 2. Elaine Rich and Kevin Knight, "Artificial Intelligence", McGraw-Hill
- 3. E Charniak and D McDermott, "Introduction to Artificial Intelligence", PearsonEducation
- 4. Dan W. Patterson, "Artificial Intelligence and Expert Systems", Prentice Hall of India
- 5. Tom M. Mitchell, —Machine Learning, McGraw-Hill Education (India) Private Limited, 2013.
- 6. Ethem Alpaydin, —Introduction to Machine Learning (Adaptive Computation and Machine Learning), The MIT Press 2004.

Experiments

- 1. Search Algorithm Simulation: Simulate depth-first search and breadth-first search algorithms to solve a simple maze problem.
- 2. Expert System Development: Create a rule-based expert system using a decision tree to diagnose common medical conditions.
- 3. Linear Regression Model Implementation: Build a linear regression model to predict house prices based on features like size and number of bedrooms.
- 4. K-Means Clustering Exercise: Apply the k-means clustering algorithm to segment customer data into distinct groups for targeted marketing strategies.
- 5. Convolutional Neural Network (CNN) Training: Train a CNN model to classify images of handwritten digits (MNIST dataset) into their respective classes.
- 6. Ensemble Learning Experiment: Compare the performance of different ensemble methods (e.g., random forests, gradient boosting) on a classification task using a benchmark dataset.
- 7. Reinforcement Learning Simulation: Implement a simple grid-world environment and train an agent using Q-learning to navigate and find optimal paths.
- 8. Sentiment Analysis with NLP: Perform sentiment analysis on movie reviews dataset to classify reviews as positive or negative using natural language processing techniques.
- 9. Time Series Forecasting: Use historical stock price data to forecast future prices using time series analysis techniques like ARIMA or LSTM networks.
- 10. AI and ML Project: Choose a domain of interest (e.g., healthcare, finance) and develop a mini-project applying machine learning techniques to solve a relevant problem, such as disease prediction or stock price prediction.

Course title:	Database Management Systems	Sub code:	PC404				
		Structure:	L	T	P	C	
			2	0	2	3	
Course Objective:	To understand the role and functions of a database management system and its impact on performance of a computer system.					verall	
	To understand the concepts and techniques involve	d in ER modeling.					
	To understand the SQL commands and relational alg	gebraic expressions for q	uery p	roces	sing.		
	To gain hands-on experience with designing and im programming projects and case studies.	plementing database mar	agem	ent sy	ystems	through	
Course Outcome:	Learn the basic concepts of Database Systems	Learn the basic concepts of Database Systems					
	• Model the real-world systems using Entity Relationship Diagrams and convert the ER model into a relational logical schema using various mapping algorithms				nto a		
	Make use of SQL commands and relational algebra	ic expressions for query	proces	ssing			
	Simplify databases using normalization process base and solve the atomicity, consistency, isolation, dura databases	•			-		

Content

Module 1: Introduction

- General introduction to database systems; Database - DBMS disctinction, approaches to building a database, data models, database management system, threeschema architecture of a database, challenges in building a DBMS, various components of a DBMS.

Module 2: Database design and ER Model

Overview, ER-Model, Constraints, ER-Diagrams, ERD Issues, weak entity sets, Codd's rules, Relational Schemas, Introduction to UML Relational database model: Logical view of data, keys, integrity rules. Relational Database design: features of good relational database design, atomic domain and Normalization (1NF, 2NF, 3NF, BCNF).

Module 3: Relational algebra

Introduction, Selection and projection, set operations, renaming, Joins, Division, syntax, semantics. Operators, grouping and ungrouping, relational comparison. Calculus: Tuple relational calculus, Domain relational Calculus, calculus vs algebra, computational capabilities.

Module 4: SQL

Introduction, data definition in SQL, table, and key and foreign key definitions, update behaviors. Querying in SQL - basic select-from-where block and its semantics, nested queries- correlated and uncorrelated, notion of aggregation, aggregation functions group by and having clauses, embedded SQL. Data Storage and Indexes - file organizations, primary, secondary index structures, various index structures - hashbased, dynamic hashing techniques, multi-level indexes, and B+ trees.

Module 5: Transaction management and Concurrency control

Transaction processing and Error recovery - concepts of transaction processing, ACID properties, and serializability concurrency control, Lock based concurrency control (2PL, Deadlocks), Time stamping methods, optimistic methods, and database recovery management. Error recovery and logging, undo, redo, undo-redo logging and recovery methods.

Reference Books	;	
	1	Fundamentals of Database Systems Author R. Elmasri and S.B. Navathe Publisher Pearson Edition
		2016
	2	Database Systems Concepts Author H.f.Korth and Silberschatz Publisher McGraw Hill
	3	Database System Author Hector Garcia-Molina, Jeff Ullman, and Jennifer Widom Publisher Pearson
		Edition 2nd Edition
	4	Data Base Design Author C.J. Date Publisher Addison Wesley.

•		
	5	DBM and Design Author Hansen and Hansen Publisher PHI
	6	"Database System Concepts" Authors: Abraham Silberschatz, Henry F. Korth, S. Sudarshan Publisher:
		McGraw-Hill Education Year: 2020 (7th edition).
list of Experime	ents	
	1	Library Management system (File Handling)
	2	Introduction to SQL ● Installation of SQL-Server ● SQL data definition ● Constraints in SQL ●
		Schema change Statement
	3	Basic SQL Queries
	4	Complex SQL Queries-1 • Nested Queries • Correlated Nested Queries • EXISTS Function in SQL • Aggregation Function
	5	Complex SQL Queries-2 ● Joined Tables ● Aggregate Functions
	6	Complex SQL Queries-3 ● Grouping ● EXISTS and UNIQUE functions ● Aggregate Functions
	7	Entity-Relationship Diagram from Case Study
	8	Normalization of the Case Study
	9	Webpage Connectivity with SQL Server Using XAMPP- 1
	10	Webpage Connectivity with SQL Server Using XAMPP- 2
L		1